

Master of Science M. Sc Biochemistry Semester I

Course Code	PS01CBIC22	Title of Course	the	Intermediary Metabolism
Total Credits of the Course	04	Hours Week	per	04
Course Objectives:	Students should be (1) Understand a connection to physic	e able to : reactions siology	and i	importance of cellular metabolism and

(2) understand some of the clinical pathology like starvation, Diabetes, etc.

Course Content		
Unit	Description	Weightage* (%)
1.	Important Bioenergetics concepts: Cells Require Sources of Free Energy	25
	Actual Free-Energy Changes Depend on Reactant and Product	
	Concentrations	
	Concept of standard free energy and its relation to free energy and	
	equilibrium constants	
	Calculation of standard free energy of biochemical reactions and	
	membrane transport	
	Standard Free-Energy Changes Are Additive	
	The central axis of Intermediary metabolism: Glycolysis, Oxidative	
	decarboxylation of Pyruvate, Citric acid cycle &	
	oxidative phosphorylation & their regulation,	
	Un-couplers and inhibitors of energy transfer.	
	The role of TCA cycle intermediates to generate biosynthetic intermediates: Generation of Acetyl-CoA in cytosol by citrate, roles of Oxaloacetate and α - keto glutarate to generate amino acids.	
	The central role of Acetyl-CoA in Carbohydrate, Fat and Protein metabolism.	
2.	Regulation of blood glucose homeostasis	25
	Adaptation of Carbohydrate metabolism in starvation: Gluconeogenesis, Metabolic cooperation between Liver and muscle: Glycogenolysis, Cori's cycle, metabolism in brain, liver, adipose tissue; synthesis & utilization of ketone bodies	

	Adaptation of Carbohydrate metabolism in hyperglycemia: Glycogenesis, Pentose phosphate pathway	
	A brief overview of Cellular uptake of fatty acids	
	α,β , $\dot{\omega}$ oxidation of fatty acids and lipid peroxidation.	
	Fatty acid biosynthesis: Acetyl CoA carboxylase, Fatty acid synthase, desaturase and elongase.	
	Lipid biosynthesis: Biosynthesis of triacylglycerol, phosphoglycerides, sphingolipids.	
	Biosynthesis pathways for steroids and prostaglandins.	
3.	Degradation of amino acid and their regulation, oxidative deamination, Urea cycle and its regulation. Linkage between urea cycle and citric acid cycle	25
	Biosynthesis of amino acids and regulation.	
	Biosynthesis of aminolevulinate and Biosynthesis of heme from aminolevulinate.and degradation of heme to bilirubin.	
	Biosynthesis of creatine and phosphocreatine.	
	Biosynthesis of purines and pyrimidines and regulation, Degradation of purines and pyrimidines, and regulation	
	Biosynthesis, Structure and regulation of ribonucleotide reductase, biosynthesis of ribonucleotides, deoxyribonucleotides and polynucleotides	
4.	ROS as inevitable by-products of aerobic metabolism Role of NADPH and glutathione in protecting cells against highly reactive oxygen derivatives.	25
	Glutathione metabolism	L
	Metabolic dysfunction in human diseases: hypertension, hyperlipidemia, atherosclerosis and metabolic syndrome	
	Inborn errors of metabolism: Glycogen storage diseases, phenylketonuria, albinism, Homocystinuria, Maple-syrup urine disease, Gaucher disease, Fabry disease, Lesch-Nyhan syndrome, Gout	

L	

Teaching-Learning Methodology	Topics will be taught and discussed in interactive sessions using conventional black board and chalk as well as ICT tools such as power point presentations and videos. Practical sessions will be conducted in a suitably equipped laboratory either individually or in groups depending on the nature of exercise as well as availability of infrastructure. Course materials will be provided from primary and secondary sources of information.
----------------------------------	---

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Course Outcomes: Having completed this course, the learner will be able to
--

1.	Student should know normal blood metabolites and should be able to relate to abnormal
	metabolic conditions and understand diagnosis of metabolic disorders.

Suggested References:		
Sr. No.	References	
1.	Nelson David L. and Cox Michael M. (2017). Lehninger Principles of Biochemistry (7 th Edn). W.H.Freeman & Co Ltd, Macmillan Publishers, United States of America.	
2.	Victor Rodwell, David Bender, et al. (2018). Harper's Illustrated Biochemistry (31 st Edn). McGraw-Hill Education, Ahmedabad.	

SARDAR PATEL UNIVERSITY Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2021-2022

3.	Jeremy Berg, John L. Tymoczko and Gregory J. Gatto Jr and Lubert Stryer (9 th Ed.) (2019). Biochemistry. Macmillan Publishers, United States.
4.	Thomas M. Devlin (2010). Textbook of Biochemistry With Clinical Correlations. (7 th Edn.) Wiley-Liss, Inc., New York.

On-line resources to be used if available as reference material

On-line Resources

Related review articles and research papers

