SARDAR PATEL UNIVERSITY **Programme & Subject: M.Sc (Earth Science) Semester: III** Syllabus with Effect from: June - 2014

Paper Code: PT03CESC03		Total Cradit: 1
Title Of Paper: Climate Dynamic & Earth System Interactions		Total Cleuit. 4
Unit Description in Detail		Weightage (%)
I Atmosphere: Geometry and Chemical composition, Physical properties Global energy balance - Planetary emission temperature, Atmo absorption spectrum, Green house effect, Vertical structure of the atmo Temperature and greenhouse gases. The relationship between pressu density, hydrostatic balance, Vertical structure of pressure and densi nature of convection, Convection in water, Dry convection in a comp atmosphere, The atmosphere under stable conditions, Moist conv Convection in the atmosphere, Radiative-convective equilibrium.	s of air, ospheric osphere, ure and ty, The ressible vection,	25%
II The meridional structure of the atmosphere- Radiative forcing and temp Pressure and geopotential height, Moisture and winds. The equations motion-Differentiation following the motion, Equation of motion nonrotating fluid, Conservation of mass, Integration, boundary condition restrictions in application, Equations of motion for a rotating fluid. B flow-Geostrophic motion, The Taylor-Proudman theorem, The therma equation, Subgeostrophic flow: the Ekman layer.	erature, of fluid for a ons, and alanced al wind	25%
III The general circulation of the atmosphere: Circulation, A mechanistic the circulation, Energetics of the thermal wind equation, Large atmospheric energy and momentum budget, Latitudinal variations of o Ocean and its circulation-Physical characteristics of the ocean, Inference geotropic and hydrostatic balance, Ocean eddies. The wind-driven circulation the wind stress and Ekman layers, Response of the interior ocean to pumping, Interior balances, Depth-integrated circulation: Sverdrup Effects of stratification and topography, Baroclinic instability in the ocean	view of ge-scale climate. es from ulation- Ekman theory, an.	25%
IVThe thermohaline circulation of the ocean: Air-sea fluxes and surface p distributions, Observed and Dynamical models thermohaline circ Observations of abyssal ocean circulation, The ocean heat budg transport, Freshwater transport by the ocean. Climate and climate vari The ocean as a buffer of temperature change, Southern Osc Paleoclimate. Mathematical and physical structure of Climate n Hierarchy of Climate models, general circulation models.	property pulation, get and iability- illation, models-	25%

Basic Text & Reference Books:-

- Atmosphere, Ocean and Climate Dynamics: An Introductory, John Marshall and R. Alan Plumb, Elsevier Academic Press.
- An Introduction to Dynamic Meteorology, James R Holton, Academic Press.
- > Physics of Climate, Jose P. Peixoto, Abraham H. Oort, American Institute of Physics
- ▶ Global Physical Climatology, Dennis L. Hartmann , Academic press.
- Atmosphere-Ocean dynamics, A E Gill, Academic press.
- > Dynamical Paleoclimatology: Generalized Theory of Global Climate Change B. Saltzman, Academic press.
- > James R Holton, 'An Introduction to Dynamic meteorology' 2004, 4th Ed. Academic Press.

