SARDAR PATEL UNIVERSITY, Vallabh Vidyanagar, Anand Gujarat Structure of Core subject at B. Sc. Semester VI Subject: Botany Effective from June 2020

Paper code	Title of Paper	Credit	Lectures per week	Internal exam	External	External exam
			per week	CAUIII	CAUM	hrs
US06CBOT21(T)	Pharmacognosy and Phytochemistry	4	4	30/12	70/28	3
US06CBOT22(T)	Anatomy of Angiosperms	4	4	30/12	70/28	3
US06CBOT23(T)	Plant Biochemistry	4	4	30/12	70/28	3
US06CBOT24(T)	Plant Biotechnology	4	4	30/12	70/28	3
US06CBOT25(P)	Botany Practical	6	12	45/18	105/42	6
US06DBOT26(T) or	Microtechniques or	2	2		50/20	2
US06DBOT27(T)	Floriculture					
		24	30 hrs/week			

SARDAR PATEL UNIVERSITY Programme: B. Sc. (BOTANY) Semester: VI Paper Code: US06CBOT21 (T) Title of Paper: PHARMACOGNOSY AND PHYTOCHEMISTRY Total Credit: 4 (Four Lectures per week) (Total Marks 100, Internal-30 marks, External 70-marks) Syllabus with effect from: June 2020

Learning Outcome: On completion of this course, students will be able to know about identification, chemical constituents, and uses of plant drugs with their nutraceutical values.

US06CBOT21(T) 4			
Pharmacognosy and Phytochemistry			
UNIT	CONTENT		
1	Introduction to Pharmacognosy:		
	Definition, history, scope, future and pharmacognostical scheme of		
	Pharmacognosy. Organized and Unorganized drugs: Classification of drugs of		
	natural origin: Alphabetical, Taxonomical, Morphological, Pha	rmacological,	
	chemical, Chemotaxonomical and serotaxonomical classification.		
2	Introduction to Primary and Secondary metabolites:		
	Definition, classification, properties and test for identification of ca	arbohydrates,	
	proteins, lipids, alkaloids, glycosides, flavonoids, tannins, volatile oils	and resins.	
3	Traditional drugs of India:		
	Study of biological source, chemical constituents and uses of following drugs:		
	Adusa, Amla, Arjuna, Ashoka, Bhilama, Brahmi, Cassia, Chirata, Chitrak, Gokhru,		
	Guggal, Kalejire, Lahsun, Methi, Palas, Punarnava, Shatavari, Shankhpushpi, Tulsi,		
	Tylophora.		
4	Nutraceuticals:		
	Definition, scope and future prospects.		
	Classification-Inorganic mineral supplements, vitamin supplement, Digestive		
	enzyme, Prebiotic, Probiotic, Dietary fibers, Cereals, Health drinks, Antioxidants,		
	Polyunsaturated fatty acids.		
	Herbs as functional foods: Flax seeds, Ginkgo biloba, Spirulina, Ginseng, Garlic		
	organo-sulphur compounds, Tea catechins, Citrus Limonoids, Soya products,		
	Tomato lycopenes, Momordica charantia, Turmeric curcuminoids, Fenugreek.		

SARDAR PATEL UNIVERSITY Programme: B. Sc. (BOTANY) Semester: VI Paper Code: US06CBOT22 (T) Title of Paper: ANATOMY OF ANGIOSPERMS Total Credit: 4 (Four Lectures per week) (Total Marks 100, Internal-30 marks, External 70-marks) Syllabus with effect from: June 2020

Learning Outcome: Students will be able to explain structural organization of plants, tissues, its growth and adaptations.

US06CBOT22 4 CREI		4 CREDIT	
Anator	Anatomy of Angiosperms		
UNIT	CONTENT	I	
1	Introduction and scope of Plant Anatomy:		
	Applications in systematics, forensics and pharmacognosy.		
	Structure and Development of Plant Body: Internal organization of plant	body: The three	
	tissue systems, types of cells and tissues. Development of plant	body: Polarity,	
	Cytodifferentiation and organogenesis during embryogenic development		
2	The Tissue systems:		
	Classification of tissues; Simple and complex tissues (no phylogeny); cy	todifferentiation	
	of tracheary elements and sieve elements; Pits and plasmodesmata; Wal	ll ingrowths and	
	transfer cells, adcrustation and incrustation, Ergastic substances. Hyda	thodes, cavities,	
	lithocysts and laticifers.		
	Apical meristems: Evolution of concept of organization of shoot ap	ex (Apical cell	
	theory, Histogen theory, Tunica Corpus theory); Types of vascular bund	les; Structure of	
	dicot and monocot stem. Origin, development, arrangement and diver	sity in size and	
	shape of leaves; Structure of dicot and monocot leaf, Kranz anatomy.	Organization of	
	root apex (Apical cell theory, Histogen theory, Korper-Kappe theory); Q	Quiescent centre;	
	Root cap; Structure of dicot and monocot root; Endodermis, exodermi	is and origin of	
-	lateral root.		
3	Vascular Cambium and Wood:		
	Structure, function and seasonal activity of cambium; Secondary grow	wth in root and	
	stem. Axially and radially oriented elements; Types of rays and axi	al parenchyma;	
	Cyclic aspects and reaction wood; Sapwood and heartwood; Ring and	l diffuse porous	
	wood; Early and late wood, tyloses; Dendrochronology. Development a	and composition	
	of periderm, rhytidome and lenticels.		
4	Adaptive and Protective Systems:	1 1. 11 1	
	Epidermai tissue system, cuticie, epicuticular waxes, trichomes(uni-an	a multicellular,	
	glandular and nonglandular, two examples of each), stomata	(classification);	
	Addrustation and incrustation; Anatomical adaptations of xerophytes and	i hydrophytes.	

SARDAR PATEL UNIVERSITY Programme: B. Sc. (BOTANY) Semester: VI Paper Code: US06CBOT23 (T) Title of Paper: PLANT BIOCHEMISTRY Total Credit: 4 (Four Lectures per week) (Total Marks 100, Internal-30 marks, External 70-marks) Syllabus with effect from: June 2020

Learning outcome: The students will be able to explain various plant processes and functions, metabolism, concepts of assimilation, biological oxidation and nitrogen fixation.

US06CBOT23		4 CREDIT
Plant Biochemistry		
UNIT	CONTENT	
1	Carbon assimilation:	
	Introduction, anabolic and catabolic pathways, regulation of meta	abolism, role of
	regulatory enzymes (allosteric, covalent modulation and Isozymes).	
	Historical background, photosynthetic pigments, role of photosyr	thetic pigments
	(chlorophylls and accessory pigments), antenna molecules and r	reaction centers,
	photochemical reactions, photosynthetic electron transport, PSI, PSI	I, Q cycle, CO_2
	reduction, photorespiration, C ₄ pathways; Crassulacean acid meta	bolism; Factors
	affecting CO_2 reduction.	
	Synthesis and catabolism of sucrose and starch.	
2	Carbohydrate Metabolism:	
	Glycolysis, Fermentation, fate of pyruvate, regulation of glycolysis, c	oxidative pentose
	phosphate pathway, oxidative decarboxylation of pyruvate, regulation	n of PDH, TCA
	cycle, amphibolic role, anaplerotic reactions, regulation of the cycl	e, mitochondrial
	electron transport, oxidative phosphorylation, Gluconeogenesis	cyanide-resistant
	respiration, factors affecting respiration.	
3	Lipid and Nitrogen metabolism:	
	Lipid Metabolism: alpha, bita and omega oxidation of fatty acids.	
	Nitrogen metabolism: Ammonification, Nitrification, Nitrate	e assimilation,
	Denitrification, Nitrogen fixation: Biological and nonbiological N	itrogen fixation,
	Biochemistry of nitrogen fixation, Non symbiotic and symbiotic n	itrogen fixation,
	Nitrogen fixation in cyanobacteria, Biosynthesis of aminoacids-Redu	ictive amination,
	I ransamination.	
4	Enzymes:	. C
	Historical background, Classification, nomenciature and importance (of enzymes, role
	of enzymes as bio catalysis, physiological and biochemical properties,	concept of noio-
	enzymes, coenzymes, apoenzymes & prosineuc groups, mechanism	and kinetics of
	action, enzyme miniorition, isozymes, anosteric enzymes, indust	mai aspects of
	enzymology.	

SARDAR PATEL UNIVERSITY Programme: B. Sc. (BOTANY) Semester: VI Paper Code: US06CBOT24 (T) Title of Paper: PLANT BIOTECHNOLOGY Total Credit: 4 (Four Lectures per week) (Total Marks 100, Internal-30 marks, External 70-marks) Syllabus with effect from: June 2020

Learning Outcome:

The goal of this course is to introduce biotechnology methods in plants. The objective of the course is to give students new knowledge and widening of the knowledge acquired in other course by handling of classical and modern plant biotechnology processes, including breeding of healthy plants, plants with improved characteristics and plants for biomolecule production. Understanding of biotechnological processes has also applicative value in pharmaceutical and food industry, in agriculture and in ecology.

US06CI	US06CBOT24 4 CREDIT			
Plant B	Plant Biotechnology			
UNIT	CONTENT			
1	Plant Tissue Culture:			
	Historical perspective; Composition of media; Nutrient and he	ormone requirements		
	(role of vitamins and hormones); Totipotency; Organogenesis; Em	bryogenesis (somatic		
	and zygotic); Protoplast isolation, culture and fusion; Tissue	culture applications		
	(micropropagation, androgenesis, virus elimination, secondary m	netabolite production,		
	haploids, triploids and hybrids; Cryopreservation; Germplasm Cor	servation).		
2	Recombinant DNA technology:			
	Restriction endonucleases, prokaryotic and eukaryotic cloning v	vectors; genomic and		
	cDNA libraries; Southern and Northern Analysis, various techniq	ues of gene mapping		
	and DNA fingerprinting (RFLP, RAPD, AFLP); chromosome	walking, polymerase		
	chain reaction; DNA sequencing.			
3	Methods of gene transfer:			
	Agrobacterium-mediated, Direct gene transfer by Electropora	tion, Microinjection,		
	Microprojectile bombardment; Selection of transgenics- selectable	e marker and reporter		
	genes.			
4	Applications of Biotechnology:			
	Pest resistant (Bt-cotton); herbicide resistant plants (RoundU	Jp Ready soybean);		
	Transgenic crops with improved quality traits (Flavr Savr to	omato, Golden rice);		
	Improved horticultural varieties (Moondust carnations); Role	e of transgenics in		
	bioremediation (Superbug); edible vaccines; Industrial enz	ymes (Aspergillase,		
	Protease, Lipase); Biosafety concerns.			

SARDAR PATEL UNIVERSITY Programme: B. Sc. (BOTANY) Semester: VI

Suggested Readings:

US06CBOT21

- 1. Pharmacognosy: C. S. Shah and J. S. Qadry
- 2. Pharmacognosy: C. K. Kokate, Purohit and Gokhle
- 3. Pharmacognosy: Mohmmad Ali
- 4. Textbook of Pharmacognosy and Phytochemistry: Shah and Seth
- 5. Experimental Pharmacognosy: Rajesh Nema and C S Bhan

US06CBOT22

- 1. Dickison, W. C. (2000). Integrative Plant Anatomy. Harcourt Academic Press, USA.
- 2. Fahn, A. (1974). Plant Anatomy. Pergmon Press, USA.
- 3. Mauseth, J. D. (1988). Plant Anatomy. The Benjammin/Cummings Publisher, USA.
- 4. Evert, R. F. (2006) Esau's Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function and Development. John Wiley and Sons, Inc.

US06CBOT23

- 1. Hopkins, W. G. and Huner, A. (2008). Introduction to Plant Physiology. John Wiley and Sons. U.S.A. 4th edition.
- 2. Taiz, L., Zeiger, E., MØller, I. M. and Murphy, A (2015). Plant Physiology and Development. Sinauer Associates Inc. USA. 6th edition.
- 3. Harborne, J.B. (1973). Phytochemical Methods. John Wiley & Sons. New York.
- 4. Verma and Verma, Text book of Plant Physiology.
- 5. Mukherji and Ghosh, Plant Physiology.
- 6. Salisbury and Ross, Plant Physiology.

US06CBOT24

- 1. Bhojwani, S. S. and Razdan, M. K., (1996). Plant Tissue Culture: Theory and Practice. Elsevier Science Amsterdam. The Netherlands.
- 2. Glick, B. R., Pasternak, J. J. (2003). Molecular Biotechnology- Principles and Applications of recombinant DNA. ASM Press, Washington.
- 3. Snustad, D. P. and Simmons, M. J. (2010). Principles of Genetics. John Wiley and Sons, U. K. 5th edition.
- 4. Stewart, C.N. Jr. (2008). Plant Biotechnology & Genetics: Principles, Techniques and Applications. John Wiley & Sons Inc. U.S.A.
- 5. B. D. Singh, Biotechnology
- 6. U.Satyanarayan, Biotechnology
- 7. P. K. Gupta, Elements of Biotechnology

SARDAR PATEL UNIVERSITY Programme: B. Sc. (BOTANY) Semester: VI Paper Code: US06CBOT25 (P) Title of Paper: BOTANY PRACTICAL Total Credit: 6 (Twelve Lectures per week) (Total Marks 150, Internal-45 marks, External 105-marks) Syllabus with effect from: June 2020

US06CBOT25 (P)	6 CREDIT
Botany Practical	

	PART-1 Plant Anatomy
1.	Study of anatomical details through permanent slides/temporary stain mounts/
	macerations/ museum specimens with the help of suitable examples.
2.	Apical meristem of root, shoot and vascular cambium.
3.	Distribution and types of parenchyma, collenchyma and sclerenchyma.
4.	Xylem: Tracheary elements-tracheids, vessel elements; thickenings; perforation plates;
	xylem fibres.
5.	Wood: ring porous; diffuse porous; tyloses; heart- and sapwood.
6.	Phloem: Sieve tubes-sieve plates; companion cells; phloem fibres.
7.	Epidermal system: cell types, stomata types; trichomes: non-glandular and glandular.
8.	Root: monocot, dicot, secondary growth.
9.	Stem: monocot, dicot - primary and secondary growth; periderm; lenticels.
10.	Leaf: isobilateral, dorsiventral, C4 leaves (Kranz anatomy).
11.	Adaptive Anatomy: xerophytes, hydrophytes.
12.	Secretory tissues: cavities, lithocysts and laticifers.
	PART-2 Plant Biochemistry
1.	Chemical separation of photosynthetic pigments.
2.	To study the effect of light intensity on the rate of photosynthesis.
3.	Effect of carbon dioxide on the rate of photosynthesis.
4.	To compare the rate of respiration in different parts of a plant.
5.	To demonstrate activity of Nitrate reductase in germinating leaves of different plant
	sources.
6.	Detection of organic acids in plants.
7.	Estmation of reucing sugar/protein/DNA by sutable method.
8.	Demonstration of respiratory enzymes in plant tissues
9.	Assay of amylase/urease/catalase/peroxidase
10.	Qualitative tests for carbohydrates
11.	Qualitative tests for proteins.
12.	Qualitative tests for lipids

US06CBOT25 (P)	6 CREDIT
Botany Practical	continued

	PART-3 Plant Biotechnology and Pharmacognosy
1.	Preparation of MS medium. (Protocol)
2.	Demonstration of <i>in vitro</i> sterilization and inoculation methods using leaf and nodal
	explants of tobacco, Datura, Brassica etc.
3.	Study of anther, embryo and endosperm culture, micropropagation, somatic
	embryogenesis & artificial seeds through photographs.
4.	Isolation of protoplasts. (Protocol)
5.	Construction of restriction map of circular and linear DNA from the data provided.
6.	Study of methods of gene transfer through photographs: Agrobacterium-mediated, direct
	gene transfer by electroporation, microinjection, microprojectile bombardment.
7.	Study of steps of genetic engineering for production of Bt cotton, Golden rice, Flavr Savr
	tomato through photographs.
8.	Identification and characterization of crude drugs as prescribed in theory course by
	performing suitable chemical tests.
9.	Chemical Tests for various classes of Phyto-constituents.
10.	Isolation of Caffeine/Quinine/Nicotine from suitable source.
11.	Field visit of Medicinal Plants.
12.	Visit to a biotechnology laboratory of repute.

SARDAR PATEL UNIVERSITY Programme: B. Sc. (BOTANY) Semester: VI Paper Code: US06DBOT26 (T) Title of Paper: MICROTECHNIQUES Total Credit: 2 (Two Lectures per week) (Total Marks 50, External marks 50) Syllabus with effect from: June 2020

Learning outcome:

Students will be able to know about microscopy, sample preparation and about microtome which enables them to utilize knowledge in practical applications.

US06DF	US06DBOT26 2 CREDIT		
MICRO	MICROTECHNIQUES		
	CONTENT		
UNII			
1	Light microscopy:		
	Properties of lenses, Optical corrections, Properties and types o	f objectives, Oculars	
	and Illumination.		
	Light microscopes: Bright field, dark field, fluorescence, phase con	ntrast.	
2	Electron microscopy:		
	Basic components of electron microscopes.		
	Thermionic and field emission guns. Types of electron micro	scopes: TEM, SEM,	
	STEM, ESEM and HVEM.		
3	Sample preparation and techniques for microscopy:		
	Maceration, squash and clearing techniques.		
	Classification of fixatives, formulas', (Plant and animal samples).		
	Sample preparation for light microscopy: Fixation, dehydra	tion and infiltration	
	procedures.		
	Embedding media for light microscopy. Stains and staining proc	edures- negative and	
	positivestaining procedures.		
4	Microtomes:		
	Types of microtomes: Rotary, sliding, cryostat.		
	Histochemical localization of metabolites for light microscopy. St	arch proteins lipids	
	total carbohydrates ligning polyphenols nucleic acid histories	cutin suberin and	
	waves	s, cutili, subcilli allu	
	Localization of any many Daravidasa acid phosphotosa and sussin	ia dahudraganasa	
	Localization of enzymes: Peroxidase, acid phosphatase and succin	ic denydrogenase.	

Suggested readings:

- 1. Microscopy and Microtechnique: R Marimuthu, MJP Publisher, Chennai
- 2. The study of plant structure: Principles and selected methods- T. P. O' Brien and M E McCully.
- 3. Plant Microtechnique- Johansen, DA, McGraw Hill Book Co., New York.
- 4. Botanical Microtechnique and Cytochemistry; Graeme P. Berlyn and Jerome P Micksche.

SARDAR PATEL UNIVERSITY Programme: B. Sc. (BOTANY) Semester: VI Paper Code: US06DBOT27 (T) Title of Paper: FLORICULTURE Total Credit: 2 (Two Lectures per week) (Total Marks 50, External marks 50) Syllabus with effect from: June 2020

Learning outcome: Students will be able to

- Get applied knowledge of cut flowers, postharvest handlings.
- Develop skill in floriculture techniques.
- Develop garden area with landscaping knowledge.

US06DI	US06DBOT27 2 CREDIT	
FLORICULTURE		
UNIT	CONTENT	
1	Introduction to the basic concepts of floriculture	
	Classification of floricultural and landscape plants	
	Propagation of ornamental plants	
2	Cut flower production like Chrysanthemum, Carnation, Orchids, Rose, Gerbera,	
	Marigold.	
	Postharvest handling of cut flowers.	
3	Dry flower production	
	Bonsai techniques and care	
	Foliage plants: Indoor and outdoor foliage plants, care for better growth.	
4	Landscaping:	
	Types of landscaping, elements for landscaping, designs for landscape area. Care for	
	landscaping area. Plant selection for landscaping.	
	Turf production and uses	

Suggested readings:

- 1. Amitabha Mukhopadhyay and G. S. Randhawa, Floriculture in India
- 2. L.L. Somani, Floriculture and Landscaping at a Glance.
- 3. Prasad S. and U. Kumar, Handbook of Floriculture.

D:\MUKESH F\SYLLABUS\SYLLABUS 2020\FACULTY OF SCIENCE\Bioscience Sem. 5 & 6\Botany\SPU-SEM-6-BOTANY-SYLLABUS-JUNE2020 (1).doc Page 10