SARDAR PATEL UNIVERSITY Programme: B.Sc (Physics) Semester: VI Syllabus with effect from: November/December-2013

Paper Code: US06CPHY01	- Total Credit: 3
Title Of Paper: Quantum Mechanics	

Unit	Description in detail	Weighting (%)
Ι	Formulation of the Schrödinger Equation	
	Brief introduction of De Broglie's Hypothesis, Concept of wave packet and	
	uncertainty principle, The Schrödinger Equation: A free particle in one	
	dimension, Generalization to three dimensions, The operator correspondence	
	and the Schrödinger equation for a particle subject to forces, Physical	
	Interpretation and Condition on Ψ: Normalization and probability	
	interpretation, Non-normalizable wave function and box-normalization,	
	Conservation of probability, Expectation value and Ententiest's theorem,	
тт	Stationary States and Energy Spectro	
11	Stationary States and Energy Spectra Stationary States: The time independent Schrödinger wave equation A particle	
	in a square well potential. Bound state in a square well potential $(E < 0)$	
	Admissible solutions of wave equation. The energy eigenvalues $-$ discrete	
	spectrum. The energy eigenfunctions, parity. Penetration into classically	
	forbidden regions, Square well : Non-localized states(E>0), The square	
	potential barrier: Quantum mechanical tunneling, Reflection at potential	
	barriers and wells, The Schrödinger equation and probability for N-particle	
	system, The fundamental postulates of wave mechanics	
III	General Formalism of Wave Mechanics	
	The adjoint of an operator and self adjointness, The eigenvalue problem:	
	Degeneracy, Eigenvalues and eigenfunctions of self adjoint operators, The	
	Dirac delta function, Observables: Completeness and normalization of	
	eigenfunctions, Closure, Physical interpretation of eigenvalues, eigenfunctions	
	and expansion coefficients, Momentum eigenfunctions. wave functions in momentum space. The uncertainty principle. States with minimum value for	
	uncertainty product Commuting observables: removal of degeneracy	
	Evolution of system with time: constants of the motion	
IV	Exactly Soluble Eigenvalue Problems	
	The Simple 'Harmonic Oscillator : The Schrödinger equation and energy	
	eigenvalues, The energy eigenfunctions, Series solution; Asymptotic	
	behaviour, Orthonormality, Properties of stationary states, Angular	
	Momentum and Parity: The angular momentum operators, The eigenvalue	
	equation for L ² ; Separation of variables, Admissibility conditions on solutions;	
	eigenvalues, The eigenfunctions: Spherical harmonics, Physical interpretation	
	Angular momentum in stationary states of system with spherical	
	symmetry: The rigid rotator, A particle in a central potential; the radial	
	radial equation and energy levels. The Anisotropic oscillator. The Isotropic	
	oscillator	
	openation	

Basic Text & Reference Books :-

- A Textbook of Quantum Mechanics
 P M Mathews and K Venkatesan, Second Edition, Tata McGraw Hill, New Delhi
- Introduction to Quantum Mechanics David J Griffiths, Second Edition, Pearson
- Quantum Mechanics Theory and applications
 Ajoy Ghatak and S Lokanathan, McMillan Publishers India Limited, Delhi
- Quantum Mechanics Leonard I Schiff, McGraw Hill Book Co.

