

B.Sc. (Biochemistry) Sem. 6

Course Code	US06CBCH51	Title of the Course	Genetic Engineering	
Total Credits of the Course	4	Hours per Week	4	
Course	The objective of	the course is t	o familiarize the students with the basic	

	· · · J · · · · · · · · · · · · · · · ·		
Objectives:	concepts in genetic engineering.		
	1. Process of inserting new genetic information into existing cells in		
	order to modify a specific organism for the purpose of changing its		
	characteristics.		
	2. To acquaint the students to versatile tools and techniques employed		
	in genetic engineering and recombinant DNA technology; and to		

appraise them about applications genetic engineering.

Course Content			
Unit	Description	Weightage* (%)	
1.	 Regulation of gene expression Principle of gene regulation Definition: constitutive enzyme, induced enzyme .inducible and induction, repressible and repression, activators and repressors Lac operon hypothesis Negative control mechanism Positive control mechanism Tryptophan operon Repressor mechanism Attenuation mechanism Regulation of gene expression in eukaryotes Euchromatin and heterochromatin Many eukaryotic promoters are positively regulated DNA binding activators and co activators 	25%	
2.	 Gene mutation and repair Definition : Mutation, Mutation hotspot ,mutagens ,Mutagenic agents Chemical mutagenic agents Causes Mutation: a. Base analogues b. Agents modifying nitrogen base c. Agents producing distortion in DNA The primary mutagenic effect of UV light a. Thymine Dimer. DNA Repair mechanism a. Mismatch Repair b. Base excision repair 	25%	

	c. Nucleotide excision repaird. Direct repair	
3.	 Recombinant DNA technology and genetic engineering Introduction of Recombinant DNA technology and genetic engineering Purification of DNA a. Preparation of total cell DNA b. Preparation of plasmid DNA Gene cloning vectors (brief) a. Plasmid b. Lambda phase c. Cosmid d. Ti plasmid e. pBR322 Restriction endonuclease its types and function 	25%
4.	 Applied genetics Detection of recombinant clone by following methods: Southern blotting Northern blotting Western blotting Principle, method and application of : PCR RFLP DNA finger printing Gene library Gene sequencing : Sanger's method Maxam and Gilbert's method 	25%

Teaching-	The course will be covered through lectures, with the help of new technologies
Learning Methodology	Apart from discussions on topics covered in lectures, assignments will also be given.

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cou	Course Outcomes: Having completed this course, the learner will be able to		
1.	The student will gain a basic understanding on human genetics and hereditary.		
2.	They learn about DNA, RNA and their replication, mutations, DNA repair mechanism.		
3.	Students learn about transgenic animal, their application in pharmaceutical industry, cloning and its importance		

Suggested References:		
Sr. No.	References	
1.	Freifelder's Essentials of Molecular Biology by George M. Malacinski	
2.	Molecular Biology of the Gene 6th edition. By Watson J D, Baker T.A., Bell, S. P., Gann, A., Levine, M., and Losick, R.,2008 Cold Spring Harbour Lab. Press, Pearson Pub.	
3.	Gene Cloning & DNA Analysis: An introduction by T A Brown WILEY Blackwell 7th Edition	
4.	Lewin's Gene XII by Elliot S Goldstein, Jocelyn E. Krebbs, and Stephen T. Kilpatrick	

On-line Resources

Course Code	US06CBCH52	Title of the Course	Immunology
Total Credits of the Course	4	Hours per Week	4

Course	1. The students will be introduced to the basic concepts of immunology as it			
Objectives:	relates to human and animal health.			
	2. The students will be able to describe the roles of the immune system in			
	both maintaining health and contributing to disease.			
	3. The students will be able to transfer knowledge of immunology into clinical			
	decision-making through case studies presented in class.			

Course Content			
Unit	Description	Weightage* (%)	
1.	 Basic Concept of Immunology: Introduction & definition of immunity, Local immunity, Herd immunity, Infection, Pathogens, Saprophytes, Parasites Types of Immunity: A) Innate Immunity 1. Levels of innate Immunity 2. Factors influence levels of innate Immunity 3. External defence (1st line of defence) 4. Internal defence (2nd line of defence) B) Acquired Immunity i) Types of Acquired Immunity ii) Cells involved in Acquired Immunity(3rd line of defence) Iymphoid organs: a) Primary lymphoid organs b) Secondary lymphoid organs 	25%	
2.	 Fundamentals of immune components Introduction & definition of antigen, Haptens, antigenicity, Epitope, Antibody Antigens: a) General features of Antigen b) Types of antigens Antibodies: a) General features of Antibody b) Structure of Antibody c) Classes of Antibody Complements and MHC Complements: Functions & Pathway of Complement i) Classical, ii) Alternate MHC : Types & function of MHC 	9	

SARDAR PATEL UNIVERSITY

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.11) Syllabus with effect from the Academic Year 2023-2024

3.	Serological reactions	25%
	A. Precipitation reaction : Mechanism & Application of precipitation	
	reaction	
	B. Agglutination reaction: Mechanism & Application of Agglutination	
	reaction	
	C. Immunological technique:	
	1. Immunofluorescence	
	2. Complement fixation test	
	3. Radioimmuno Assay	
	4. Enzyme linked immunosorbent Assay	
	D. Immunology of Transplantation:	
	a) Classification of Transplantation	
	b) The allograft reaction & mechanism of allograft rejection	
4.	Hypersensitivity & Vaccination:	25%
	1. Hypersensitivity Reaction : Type I, II, III and IV	
	2. Autoimmunity	
	a) Mechanism of autoimmunization	
	b) Rheumatoid arthritis in detail	
	3. Vaccines & Vaccination:	
	a) Types of vaccine	
	b) Routes of administration of Vaccination	
	c)	

Teaching-	Lectures and colloquiums
Learning	
Methodology	

Evaluation Pattern			
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

Cou	Course Outcomes: Having completed this course, the learner will be able to		
1.	Apply basic techniques for identifying antigen antibody interactions		
2.	Exemplify the adverse effect of immune system including Allergy, hypersensitivity and autoimmunity		
3.	Design a model of Immunoglobulin		
4.	Elucidate the reasons for immunization and aware of different vaccination		

Sugges	Suggested References:		
Sr. No.	References		
1.	Textbook of Immunology- Chakkaravarthy, Tata McGraw Hill publishing Company, Ltd (2004)		
2.	Essentials of Immunology- I. Roitt, Blackwell Science		
3.	Immunology Textbook by Janis Kuby		
4.	Textbook of Microbiology by R. Ananthanarayan		

On-line Resources

Course Code	US06CBCH53	Title of the	Human Metabolism - II	
		Course		
Total Credits	1	Hours per	1	
of the Course	4	Week	+	
Course Objectives:	 To learn major metabolize prote To understand h To study of cond To understand th To aware about 	 To learn major catabolic and anabolic pathways by which human cell types metabolize protein and nucleotides. To understand how energy is produced in the cell To study of concepts in protein and carbohydrate To understand the fundamentals of integration of various metabolic pathways To aware about the changes in metabolic pathways during fasting and fed state. 		

Course	e Content	
Unit	Description	Weightage* (%)
1.	 RESPIRATORY CHAIN AND OXIDATIVE PHOSPHORYLATION Understanding of Respiratory chain and Oxidative Phosphorylation Components of respiratory chain Nicotinamide nucleotides Coenzyme Q Flavin nucleotides Cytochromes Iron-Sulphur proteins Organisation of Electron Transport Chain Inhibitors of electron transport chain Oxidative phosphorylation Mechanism of oxidative phosphorylation (Hypothesis) P:O Ratio ATP synthase : structure and mechanism of ATP synthesis. Inhibitors of oxidative phosphorylation Uncouplers Chemiosmotic theory 	25%
2.	 PROTEIN METABOLISM Digestion and absorption of protein Cellular uptake of Amino acid Metabolic uses of Amino acid Protein turnover Amino acid pool Transamination & Deamination Ammonia transport and metabolism Ammonia toxicity Removal of ammonia 	25%

	 Metabolism of individual amino acid (In brief) Urea cycle and its regulation Interaction between urea cycle and Kreb's cycle Metabolic disorder of protein metabolism: Phenylketonuria, Albinism 	
3.	 NUCLEIC ACID METABOLISM Biosynthesis of Purine Nucleotides De Novo synthesis Synthesis of AMP and GMP from IMP Formation of Purine Nucleotide Diphosphates and Triphosphates Inhibitors of Purine synthesis Regulation of Purine Nucleotide biosynthesis Salvage pathways Synthesis of Doexyribonucleotides Degradation of Purine Nucleotides Uric acid metabolism Gout Pyrimidine metabolism De Novo synthesis , Regulation , Degradation of pyrimidine nucleotides 	25%
4.	 INTEGRATION OF METABOLISM Energy demand and supply Integration of metabolic pathways (carbohydrate, lipid and amino acid metabolic pathways) Tissue specific metabolism (brain, muscle, adipose tissue and liver). Fast – feed cycle The Fed state The Fed state The Re-fed state Glucose Homeostasis and starvation 	25%

Teaching- Learning Methodology	This course will be taught by a mixture of discussion, lecture, readings, smart - board technology, on-line quizzes and student presentation modalities.
--------------------------------------	--

Evalu	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2. Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)		15%	
3.	University Examination	70%	

Cou	Course Outcomes: Having completed this course, the learner will be able to			
1.	Understand the structure and metabolism of macromolecules and understand the regulation and disorders of metabolic pathways.			
2.	Acquire thorough knowledge in biochemical human metabolism.			
3.	Nucleic acids and proteins are metabolized, emphasizing the role of few intermediates of their metabolism, monitoring the deficiency and abundance disorders of amino acid metabolisms and the role of enzymes in the regulation of the pathways			

Suggested References:				
Sr. No.	References			
1.	Lehninger Principles of Biochemistry by David L. Nelson, Michael Cox Publisher: WH Freeman			
2.	Biochemistry by Donald Voet, Judith G. Voet Publisher: Wiley			
3.	Textbook of biochemistry by Rafi MD Publisher: Universities Press (India) Pvt. Ltd.			
4.	Biochemistry – By U Satyanarayana and U Chakrapani Publishers: Elsevier			
5.	Biochemistry by Jeremy M. Berg (Editor), John L. Tymoczko (Editor), Lubert Stryer (Editor)			

On-line Resources

Course Code	US06CBCH54	Title of the Course	Clinical Biochemistry
Total Credits of the Course	4	Hours per Week	4

Course Objectives:	Clinical Biochemistry is deals with the measurement of chemicals in blood and urine. These test results are useful for detecting health problems, determining prognosis and guiding the therapy of a patient. It also includes prevention of a
	particular disease state.

Course Content			
Unit	Description	Weightage* (%)	
1.	 BLOOD General composition of whole blood Functions Blood cells: Haematopoiesis Erythrocytes(RBC) :- functions , physical characteristics , composition, Formation & destruction of Erythrocytes WBC:- functions, Classification Platelets: - Role in Blood coagulation (brief). Blood coagulation factors and pathways 	25%	
2.	 PLASMA PROTEINS Plasma protein : Classification ,types and major functions of plasma proteins Separation of plasma protein Chemistry , functions and clinical significance of Albumin Alpha-1-antitripsin Lipoproteins Haptoglobin Ceruloplasmin Transferrin 	25%	
3.	 ORGAN FUNCTION TEST - Liver function test : functions of liver, classification of liver function test (Detail: Test based on bile pigment formation and serum enzyme activities) Formation of bilirubin: Free bilirubin, conjugated bilirubin and unconjugated bilirubin Jaundice : types – Hemolytic, Hepatic, Obstructive Jaundice due to genetic defect: Neonatal Jaundice, Crigler-Najjar syndrome type 1 and II, Gilbert's disease Renal function test : functions of kidney, classification of renal function test: examination of urine, blood analysis, test based on GFR (clearance test), test based on tubular function 	25%	

4.	HEMOGLOBIN AND ANAEMIA	25%
	• HB: - Chemistry, Structure, Normal types of Hb.	
	1) Haemoglobinopathies	
	2) Anaemia: Classification and Symptoms	
	• Sickle – cell anemia- Molecular Bais of Hbs, Biochemical Basis of	
	the diagnosis & management of Sickle cell Disease	
	• Thalassemia (brief)	
	• Nutritional anaemia (Iron deficiency anaemia, Vitamin B ₁₂	
	deficiency anaemia and folate deficiency anaemia)	

Teaching-	The teaching methodology consists of lectures, discussion, new technologies.
Learning	
Methodology	

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Course Outcomes: Having completed this course, the learner will be able to			
1.	Can understand the pathophysiology and molecular basis of the most prevalent diseases.		
2.	Know the analytical methods commonly used in the clinical laboratory.		
3.	Know the diagnosis and prevention for diseases.		

Sugges	Suggested References:		
Sr. No.	References		
1.	Principles of Anatomy and Physiology- Gerard .J. Tortora and Bryn Derrickson		
2.	Textbook of Medical Physiology- Arthur. C .Guyton, John. E .Hall.		
3.	Medical Physiology- Vol.1 and Vol.2-C.C.chatterjee		
4.	Textbook of medical biochemistry by M. N. Chatterjea and Rana Shinde		
5.	Textbook of biochemistry for medical students :D M Vasudevan		

On-line Resources

Course Code	Course Code US06CBCH55 Title of the Course Biochemistry Practical		Biochemistry Practical	
Total Credits of the Course	8	Hours per Week	12	
Course Objectives:	 Student should be able To understand SGOT, A/G r To learn blood To get knowl Rocket immu To understand HDL, triglyce To understar electrophores To learn sepa To get knowl IAA and othe To develop e: 	e to: d the significance atio, urea and crea d grouping and Rh ledge about clinic noelectrophoresis d significance of b erides, bilirubin, cl nd the isolation is ration of various p edge for estimatio r growth hormone xposure of entrepr	of estimation of clinical parameters like SGP tinine 1 factor al diagnostic techniques such as Widal, RA a biochemical parameters in diagnosis such as LD holesterol and differential count of WBC and separation of plant DNA by agarose § proteins by SDS-PAGE on of phytochemicals such as phenols, chlorophy es.	YT, .nd)L, gel

Unit	Description
	Section-I
1.	Estimation of Creatinine by Jaffe method
2.	Extraction and estimation of protein from green gram by Lowry method
3.	Estimation of SGOT and its clinical importance
4.	Estimation of SGPT and its clinical importance
5.	Determination of A/G ratio
6.	Estimation of Urea by DAMO Method
	Section-II
1.	Estimation of serum bilirubin
2.	Estimation of serum cholesterol
3.	Determination of human blood group and Rh factor
4.	Diagnosis of antigen by Widal test
5.	To learn the technique of immunoelectrophoresis (Rocket Immunoelectrophoresis)
6.	Determination of Rheumatoid Arthritis(RA) factor

	Section-III
1.	Estimation of DNA by UV spectroscopy
2.	Demonstration of Polyacrylamide gel electrophoresis of serum proteins
3.	Differential leucocyte count
4.	Isolation of chromosomal DNA from plant cells
5.	Agarose Gel Electrophoresis of plant DNA
6.	Estimation of LDL and HDL
7.	Estimation of TG
	Section-IV
1.	Estimation of chlorophyll
2.	To study the deficiency of micronutrients in plant through leaf morphology (Field study)
3.	Estimation of phenols
4.	Estimation of IAA
5.	Visit to plant tissue culture laboratory
6.	To study the effect of plant growth hormones
7.	To check the quality of oil extracted from plant seeds using Iodine value

Teaching- Learning Methodology	Topics will be taught and discussed in interactive sessions using conventional black board and chalk as well as ICT tools such as power point presentations and videos. Practical sessions will be conducted in a suitably equipped laboratory either individually or in groups depending on the nature of exercise as well as availability of infrastructure. Practical materials will be provided from primary and secondary sources of information.
--------------------------------------	--

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%

3. University Examination

Course Outcomes: Having completed this course, the learner will be able to		
1.	students will be able to demonstrate an understanding of fundamental biochemical principles.	
2.	They will gain the hands on knowledge of various techniques useful in biochemistry which can help them to stand with a skilful job at various industries and research labs	

Suggested References:	
Sr. No.	References
1.	Standard methods of biochemical analysis –S.R.Thimmaiah
2.	Practical clinical biochemistry methods & interpretations – Ranjana Chawla
3.	Practical biochemistry by Harold Varley.

On-line resources to be used if available as reference material

On-line Resources

Related References Books