

SARDAR PATEL UNIVERSITY

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2021-2022

Bachelor of Science

B.Sc. Physics Semester I

Course Code		US01CPHY51	Title of the Course	Mechanics-I, Network Analysis and Optics
Total Credits of the Course		04	Hours per Week	04
Course Objectives:	 To under particular To understand to Ultrass understand simple had pendulum To under bridge cities Inductance In this conductance In this conductance In this conductance 	rstand the theor emphasis on the stand the basic co- conic waves and ding of oscillation armonic motion is. stand simplification in the and Frequency purse, students we d classical optics l be introduced to	retical concepts of m ir elastic property oncepts of types of wav l its applications. The ions with special emp observed in case studi ion of complex electric ion of complex electric me measurements of will be introduced to f with application to inter- ovarious optical instrum	naterial behaviour with es with special reference le unit also introduces ohasis on properties of es of different types of cal networks and use of Resistance Capacitance undamental concepts of erference and diffraction. nents and their resolving

Course Content		
Unit	Description	Weightage* (%)
1.	Elasticity Introduction, Definitions of Load, Stress and Strain, Hooke's Law & Stress-strain diagram, Factors affecting elasticity, Three types of elasticity:(i) Young's modulus (ii) Bulk Modulus and (iii) Modulus of Rigidity, Work done per unit volume in elongation strain, Deformation of a cube- (Bulk modulus, Modulus of rigidity, Young modulus), Relation connecting three elastic constants, Poisson's ratio, Limiting values of σ , Determination of Poisson's ratio for rubber, Twisting couple on a cylinder (or wire), Torsional pendulum, Determination of η -Statical method (Horizontal twisting apparatus for a rod), Dynamical method (Maxwell's vibrating needle method), Bending of beams, Bending moment, The cantilever-when the weight of beam is ineffective, Depression of a beam supported at the ends-when the beam is loaded at the centre. [D.S. Mathur 8.1,8.2, 8.3, 8.7,8.8, 8.11, 8.12, 8.13, 8.14, 8.15, 8.16,	25%

	8.18, 8.20, 8.22, 8.26, 8.27,8.29,8.30,8.33] Related Numerical	
2.	Wave and OscillationsUltrasonic waves: Introduction, Generation of ultrasonics, Piezoelectric effect, Piezoelectric generator, advantages of Piezoelectric generator, Magnetostriction effect, Magnetostriction oscillator, Advantages and disadvantages of Magnetostriction 	25%
3.	Network Analysis and Bridge Circuits Elementary Network Theory: Voltage divider rule, Superposition theorem, Network terminology, Network analysis by mesh currents (two & three mesh network), Circuit analysis by Node-pair voltages (one & two node pair voltage method), Thevenin's theorem, Norton's theorem Bridges and their application: Introduction, Whetstone bridge, Basic operation, Measurement errors, AC bridges and their application, Condition for bridge balance, Application of the Balance equation, Maxwell bridge, Hay Bridge, Schering bridge, Wien bridge [Del Toro 3.4, 3.5, 3.6, 3.7, 3.8, 3.9] [Cooper and Helfrick 5.1, 5.2, 5.2.1, 5.2.2, 5.5, 5.5.1, 5.6, 5.7, 5.8,5.10] Related Numerical	25%
4.	OpticsInterferometryIntroduction to interference, Jamin's interferometer, Rayleigh'srefractometer, Michelson's interferometer; Types of fringes, whitelight fringes, Uses: measurement of wavelength of light from a	25%

monochromatic source, measurement of refractive index of a thin plate	
Resolving power of optical instruments	
Resolving power, Rayleigh's criterion; limit of resolution, limit of	
resolution of the eye, resolving power Telescope, Resolving power of	
light microscope, Resolving power of a diffraction Grating, Resolving	
power of prism spectroscope	
[Vasudev14.1,14.2,14.3,14.4,14.4(a), 14.4(b), 17.1, 17.1(a), 17.2, 17.5	
, 17.9, 17.11]	
Related Numerical	

Teaching- Learning Methodology	Direct Teaching through Chalk-Walk and Talk ICT enabled teaching Question-Answer Class discussion led by teacher/students Case Studies Literature review Problem solving activities Debate Collaborative and Co-operative Learning Think Pair Share Jigsaw Inquiry Based Learning Panel Discussion Project Based Learning Flipped Classroom Blended Learning designs Concept Mapping
--------------------------------------	--

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Course Outcomes: On the successful completion of the course, the students will be able to understand
elastic nature of material, types of elastic modulus and different methods to determine elastic modulus.
principle, production and properties of Ultrasonic waves, uses of Ultrasonic waves – NDT techniques SONAR. Determination of acceleration of gravity with different types of pendulums.
 network techniques, like mesh analysis and node analysis, to write equations for complex linear electrical circuits. To apply Thevenin's and Norton theorems to analyze and design for maximum power transfer. Concepts of DC & AC bridges and measurements of Resistance, Capacitance, Inductance and Frequency.
basic concepts of interference and its applications in various interferometry apparatus. How to derive resolving power of various optical instruments and how it can be modified.

Suggested References:		
Sr. No.	References	
1.	Elements of Properties of Matter D.S. Mathur S. Chand & Co., New Delhi (2006)	
2.	Engineering Physics K. Rajagopalan PHI Learning Private Ltd. New Delhi (2009)	
3.	Principles of Electrical Engineering (2nd Edition) Vincent Del Toro PHI Learning Private Ltd. New Delhi (2010)	
4.	Electronic instrumentation and Measurement Techniques William D. Cooper and Albert D. Helfrick, Prentice-Hall of India private Ltd (2014)	
5.	A textbook of light (10th Edition) D. N. Vasudeva Atma Ram & Sons, Delhi (1987)	

6.	A textbook of OPTICS
	N. Subrahmanyam, Brij Lal and M. N. Avadhanulu
	S. Chand Publication, New Delhi (2006)

On-line resources to be used if available as reference material

On-line Resources:

https://phys.libretexts.org/

http://hyperphysics.phy-astr.gsu.edu/

https://www.feynmanlectures.caltech.edu/II_38.html

https://nptel.ac.in/courses/115/106/115106119/

https://physicstoday.scitation.org/doi/10.1063/1.1580055:

Fundamentals and Applications of Ultrasonic Waves

https://www.allaboutcircuits.com/textbook/direct-current/chpt-10/what-is-network-analysis/

https://www.youtube.com/watch?v=UA1qG7Fjc2A

https://www.explainthatstuff.com/howinterferometerswork.html

https://opentextbc.ca/universityphysicsv3openstax/chapter/the-michelson-interferometer/
