

Course Code	US05CSTA51	Title of the Course	MATHEMATICAL STATISTICS
Total Credits of the Course	04	Hours per Week	04
Course Objectives:	 To understar numbers To learn varie power series Large sample approximate To learn varie 	nd the concept ous discrete prob distribution e results such as a sampling distri- ous continuous p placed on th	ots in probability and distribution theory s of various inequalities, law of large pability distributions as a particular case of the central limit theorem will be used to ibution probability distributions meoretical understanding combined with

Cours	e Content	
Unit	Description	Weightage* (%)
1.	Probability: Probability of union of n events, Boole's inequality, Bonferroni's inequality, convergence in probability and in distribution, Chebychev's inequality, Weak law of large numbers, Characteristic function and its properties (without proof)	25
2.	General statement of Central Limit Theorem (CLT), Lindberg Levy form, Statement of Liapunov form (without proof). Applications of Central Limit Theorem (CLT).	25
3.	Power Series Distributions: Definition, p.g.f and m.g.f. of PSD, the recurrence relations between raw moments and central moments of PSD. The results of known discrete distributions as particular cases. Truncated Binomial and Truncated Poisson distributions (truncated at $X = 0$)	25
4.	Continuous Probability Distributions: Lognormal, Cauchy, Laplace and Weibull distributions. Moments and their relations. Incomplete Gamma and incomplete Beta distributions	

Autor I

19. j

Evalı	ation Pattern	
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cou	arse Outcomes: Having completed this course, the learner will be able to
1.	learn key concepts of probability and probability distributions
2.	learn central limit theorem and its applications in understanding the concepts of statistical inference.

Sugges	sted References:
Sr. No.	References
1.	Dudewic and Misra: Modern Mathematical Statistics, John Wiley & Sons.
2.	Mukhopadhyay, P.(2006): Mathematical Statistics, 3ed., Books abd Allied(P) Ltd.
3	Rohatgi, V.K. & A.K. Md.E. Saleh (2001): An Introduction to Probability and Statistics, John Wiley (2 nd Edition)
4	Gupta, S.C. and Kapoor, V.K.: Fundamentals of Mathematical Statistics, Sultan

	Chand and Sons
5	Hogg, Mckean and Craig : Introduction to Mathematical Statistics, 8 th edition

On-line resources to be used if available as reference material

On-line Resources

•

Course Code	US05CSTA52	Title of the Course	THEORY OF ESTIMATION
Total Credits of the Course	04	Hours per Week	04

Course Objectives:	 To learn the concepts of point estimation, methods including method of moments and maximum likelihood, bias and variance, mean squared error, sufficiency, completeness, the Cramer – Rao inequality, uniformly minimum variance unbiased estimators. Confidence intervals construction methods, including likelihood based intervals, inversion methods, intervals based on pivots.
-----------------------	---

Course	e Content	
Unit	Description	Weightage* (%)
1.	Point Estimation – I Estimation: Concepts of estimation, unbiasedness, consistency and efficiency. Rao – Cramer inequality, Fisher's information, Minimum Variance Bound Unbiased Estimators (MVBUE).	_ 25
2.	Sufficiency: Fisher Neyman factorization criterion (theorem) (for one parameter discrete distributions with proof and for continuous distributions without proof).	25
3.	Point Estimation – II Methods of Estimation: Methods of moments, method of maximum likelihood. Properties of maximum likelihood estimation (Without proof). Method of iteration for maximum likelihood estimators (Method of scoring)	25
4.	Interval estimation: Random interval, definition of confidence interval, confidence intervals for the parameters of a normal distribution, for difference of two normal means, for ratio of two normal variances, for binomial	25

|--|

Teaching-	
Learning	ĺ
Methodology	

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Course Outcomes: Having completed this course, the learner will be able to	
1.	explain in detail the notion of a parametric model and point estimation of the parameters of those models.
2.	explain in detail and demonstrate approaches to include a measure of accuracy for estimation procedures and our confidence in them by examining the area of interval estimation.

Suggested References:	
Sr. No.	References
1.	Hogg, R.V., Tanis, E.A. and Rao J.M. (2009): Probability and Statistical Inference, Seventh edition, Pearson Education, New Delhi

2.	Miller, Irwin and Miller, Marylees (2006): John E. Freund's Mathematical Statistics with applications, (7 th Edition), Pearson Education, Asia
3	Dudewic and Misra: Modern Mathematical Statistics, John Wiley & Sons.
4	Hogg, R.V. and Craig, A.T. (1972): Introduction to Mathematical Statistics, Amerind Publishing Co.
5	Lehmann, E.L. (1983): Theory of Point Estimation, Wiley Eastern
6	Robert V. Hogg and Elliot Tanis : Probability and Statistical Inference, 8 th edition

On-line resources to be used if available as reference material

On-line Resources

Course Code	US05CSTA53	Title of the Course	SURVEY SAMPLING
Total Credits of the Course	04	Hours per Week	04

Course Objectives:	 To introduce the basic concepts of survey sampling theory including brief introduction to questionnaire design, methods of sample selection, estimation, sampling variance, standard error of estimation in finite population Development of sampling theory for use in sample survey problems and sources of errors in surveys. Practical examples will be used to illustrate the principles and methods.
-----------------------	--

Course	Course Content		
Unit	Description	Weightage* (%)	
1.	Basics of Survey sampling and Equal Probability Sampling Scheme: Concept of population and sample, Complete enumeration V/S sampling. Basic principles of sample survey. Simple Random Sampling (SRS) with and without replacement, definition and procedure of selecting a random sample, estimates of population mean, total and proportion, variances of these estimates, estimates of their variances.	25	
2.	Stratified Random Sampling: Technique, estimates of population mean and total, variances of these estimates, proportional and optimum allocations and their comparison with SRS. Practical difficulties in allocation.	25	
3.	Systematic sampling: Technique, estimates of population mean and total, variances of these estimates ($N = nk$). Comparison of systematic sampling with SRS and stratified random sampling.	1	

4.	Determination of sample size: Determination of sample size for proportion and continuous data in case of SRS. Cluster sampling (Equal clusters only) (Introduction only)	25
	Sampling and non – sampling errors.	

Teaching-	
Learning	
Methodology	

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cou	Course Outcomes: Having completed this course, the learner will be able to	
1.	understand and interpret real life survey reports	
2.	understand concepts and techniques in sampling methods	
3.	understand solution methodology to estimate population parameters	

Sugges	Suggested References:		
Sr. No.	References		
1	Cochran W.G. (1984): sampling Techniques (3 rd Edition), Wiley Eastern		

2.	Sukhatme, P.V., Sukhatme, B.V.: Sampling Theories of Survey With Application, IOWA State University Press and Indian Society of Agricultural Statistics	
3	Murthy M.N. (1977): Sampling Theory & Statistical Methods, Statistical Pub. Society, Calcutta.	
4	Gupta, S.C. And Kapoor, V.K. (2005): Fundamentals of Applied Statistics, Sultan Chand & Sons	

On-line resources to be used if available as reference material

On-line Resources

Course Code	US05CSTA54	Title of the Course	STATISTICAL QUALITY CONTROL
Total Credits of the Course	04	Hours per Week	04

Course	 To understand the concepts underlying statistical quality control To develop ability to apply those concepts to the design and
Objectives:	management of quality control processes in industries
	3. To apply statistical tools to analyze, design and use of various charts for quality control

Cours	Course Content		
Unit	Description	Weightage* (%)	
1.	Quality:	25	
	Definition, dimensions of quality, Quality system and standards. Introduction to ISO quality standards, Quality registration.		
	Statistical Process Control (SPC), chance and assignable causes of quality variation.		
2.	Statistical quality control charts:	25	
	Construction and statistical basis of 3σ control charts.		
	Control charts for variable: X – bar & R chart, X – bar and S chart.		
	Control charts for attribute: p – chart, np chart, C chart and u chart. Comparison between control charts for variables and attributes.		
3.	Acceptance sampling plan:	25	
	Principles of acceptance sampling plans. Single sampling plan their OC, AQL, LTPD, AOQ, AOQL, ASN and ATI functions with graphical interpretations.		
4.	Double sampling plans their OC, AQL, LTPD, AOQ, AOQL, ASN and ATI functions.	25	

Teaching-	
Learning	
Methodology	

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cou	Course Outcomes: Having completed this course, the learner will be able to		
1.	understand the basic concepts of quality, quality control and tools to improve quality		
2.	demonstrate the ability to use and interpret control charts for variables and attributes understand the concepts of various acceptance sampling plans		
3.	understand the concepts of various acceptance sampling plans		

Sugge	Suggested References:		
Sr. No.	References		
1.	Montogomery, D.C. (2009): Introduction to Statistical Quality Control, 6 th Edition, Wiley India Pvt. Ltd.		
2.	Mukhopadhyay, P (2011): Applied Statistics, 2 nd Edition revised reprint, Books and Allied (P) Ltd.		

3	Gupta, S.C. And Kapoor V.K.(2005): Fundamentals of Applied Statistics, Sultan Chand & Sons
4	Chapman and Hall, - Brownlee, K.A.(1960): Statistical Theory and Methodology in Science and Engineering, john Wiley & Sons.

On-line resources to be used if available as reference material

On-line Resources

Course Code	US05CSTA55	Title of the Course	PRACTICAL: STATISTICAL DATA ANALYSIS MANUALLY and USING SOFTWARE PACKAGES
Total Credits of the Course	08	Hours per Week	16

Course Objectives:	 To practice data entry, loading data, plotting graph, generating different descriptive statistical measures, correlation and regression analysis using statistical software To generate random numbers and understand the concepts of fitting of polynomials and exponential curves and normal probability plot using statistical software To learn to do univariate and bivariate data analysis and create output, interpret applying statistical methods including hypotheses testing.
-----------------------	--

Course Content		
Unit	Description	Weightage* (%)
1.	Learn how to enter data, load data, plot a graph viz. histograms (equal class intervals and unequal class intervals), Box – plot, Stem – leaf, frequency polygon, pie chart, ogives with graphical summaries of data.	25
2.	Generate automated reports giving detailed descriptive statistics, correlation and regression.	25
3.	Random number generation and sampling procedures. Fitting of polynomials and exponential curves. Application problems based on fitting of suitable distribution. Normal probability plot.	1
4.	Simple analysis and create and manage statistical analysis projects, import data, code editing, Basics of statistical inference in order to understand hypotheses testing and compute p – values and confidence intervals.	25

Teaching-	-		
Learning			
Methodology			

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Course Outcomes: Having completed this course, the learner will be able to
--

1. do graphical presentation, fitting of various curves and hypotheses testing based on given data and is able to do statistical analysis of the data.

Suggested References:		
Sr. No.	References	
1.	Moore, D.S. and McCabe, G.P. and Craig, B.A. (2014): Introduction to Practice of Statistics, W.H.Freeman.	
2.	Cunningham, B.J. (2012): Using SPSS: An Interactive Hands on approach.	

On-line resources to be used if available as reference material

On-line Resources