

SARDAR PATEL UNIVERSITY

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.11) Syllabus with effect from the Academic Year 2025-2026

Bachelor of Science B.Sc. Physics (Semester -V)

Course Code	US05MAPHY01	Title of the Course	Classical Mechanics
Total Credits of the Course	4	Hours per Week	4
Course Objectives:	of classical sys 2. To create av application to symmetric top 3. To provide an	tems through La vareness about study the motion etc. exposure to the s applications to	ralized coordinates to deal with mechanics agrangian formulation. rotating co-ordinate systems and its n of Earth, rigid body motions, motion of e mathematical techniques of calculus of physical systems through Lagrangian and

	Course Content				
Unit	Description	Weightage (%)			
1.	Lagrangian Formulation Constraints, Generalized co-ordinates, D'Alembert's principle, Lagrange's equations, A General expression for kinetic energy, Symmetries and the laws of conservation, Cyclic or Ignorable coordinates, Illustrations, Velocity dependent potential of electromagnetic field, Rayleigh's dissipation function.	25%			
	[Introduction to Classical Mechanics by R G Takwale & P S Puranik : 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9]				
2.	Moving coordinate systems and motion of a rigid body Coordinate systems with relative translation motions, Rotating coordinate systems, The Coriolis force, Motion on the earth, Effect of Coriolis force on freely falling particle, Euler's Theorem, Angular momentum and kinetic energy, The inertia tensor, Euler's equations of motion, Torque free motion, Euler's angles, Motion of a symmetric top. [Introduction to Classical Mechanics by R G Takwale & P S Puranik: 9.1, 9.2, 9.3, 9.4, 9.5, 10.1, 10.2, 10.4, 10.5, 10.6, 10.7]	25%			
3.	Variational PrincipleConfiguration space, Some techniques of calculus of variation, The δ Notations, Applications of the variational principle, Hamilton's principle, Equivalence of Lagrange's and Newton's equations, Advantages of the Lagrangian Formulation–Electro–Mechanical analogies, Lagrange's undetermined multipliers, Lagrange's equations for Non holonomic systems, Applications of the Lagrangian method of undetermined multipliers.[Introduction to Classical Mechanics by R G Takwale & P S Puranik: 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8, 11.9]	25%			

4.	Hamiltonian FormulationHamilton's equations of motion, Some applications of the Hamiltonian formulation, Phase Space, Comments on the Hamiltonian formulation, Gauge Transformation, Canonical transformation, Conditions for transformation to be Canonical, Illustrations of Canonical transformations, Poisson brackets.[Introduction to Classical Mechanics by R G Takwale & P S Puranik : 11.10, 11.11, 11.12, 11.13, 12.1, 12.2, 12.3, 12.4, 12.5]	25%
----	---	-----

Teaching- Learning Methodology	Direct Teaching through Chalk-Walk and Talk ICT enabled teaching Question-Answer Class discussion led by teacher/students Case Studies Literature review Problem solving activities Debate Collaborative and Co-operative Learning Think Pair Share Jigsaw Inquiry Based Learning Panel Discussion Project Based Learning Flipped Classroom Blended Learning designs
	Flipped Classroom Blended Learning designs Concept Mapping

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Continuous Assessment in the form of Internal Written Test, Quizzes, Assignments, Active learning, Viva-voce, Seminars, Attendance (As per NEP Guideline)	50%
2.	University Examination	50%

Course Outcomes: Having completed this course, the learner will be able to		
1.	understand the generality of generalized coordinates and will be able to apply for the study of the mechanics of classical systems.	
2.	understand the effect of rotational motion of the earth and its effect on weather conditions.	

3.	They will get an idea of inertia and symmetry of rigid bodies, variational method for motion of the system as another formulation to solve mechanical problems.
4.	Students will be able to understand the production of Hamiltonian function and use of Lagrangian and Hamiltonian formulation for the study related to motion of classical systems.

Suggested References:		
Sr. No.	References	
1.	Introduction to Classical Mechanics R G Takwale and P S Puranik Tata McGraw Hill Education Pvt Ltd.	
2.	Classical Mechanics Herbert Goldstein, Charles P. Poole and John Safko Third Edition, Pearson	
3.	Classical Mechanics Aruldhas PHI Learning Pvt Ltd, New Delhi	

On-line resources to be used if available as reference material

On-line Resources

https://www.google.com/search?q=Lagrangian+formulation&source=lnms&sa=X&ved=0ah UKEwiEjaPe1rHuAhVrFLcAHc2ZA18Q_AUICigA&biw=1094&bih=472&dpr=1.25

https://en.wikipedia.org/wiki/Hamiltonian_mechanics

https://bdigital.uvhm.edu.mx/wp-content/uploads/2020/06/variational-principles-classicalmechanics.pdf

Bachelor of Science B.Sc. Physics (Semester -V)

Course Code	US05MAPHY02	Title of the Course	Analog and Digital Circuits	
Total Credits of the Course	04	Hours per Week	-	
Course Objectives:	their application 2. To provide e operational and 3. To train the st	ons in Voltage a xposure to the plifiers. tudents in the b	halog and digital electronic circuits and nd power amplifications. e working and wide applications of pasics of digital logic circuits and the igital circuits as registers, counters etc.	

	Course Content			
Unit	Description	Weightage (%)		
1.	Frequency Response of Amplifiers:			
	Low Frequency Response of The Transistor Amplifier: Effect of Emitter Bypass Capacitor on Low Frequency response, Effect of Coupling Capacitor on Low Frequency response.			
	High Frequency Response of The Transistor Amplifier: High Frequency Model For The Common Emitter Amplifier, Approximate CE High Frequency Model with a Resistive Load, CE Short Circuit Gain, High Frequency Current Gain with a Resistive Load.			
	Transistor Power Amplifiers: Class A Direct Coupled Resistive Load, Transformer Coupled Resistive Load Amplifier.	25%		
	Push-Pull Amplifiers: Description of Operation of a Class A Push- Pull Amplifier, Theory of Operation of a Class A Push-Pull Amplifier. The Class B Push-Pull Amplifier, Crossover Distortion, Class AB Push-Pull Amplifier, Transistor Phase Inverter, Conversion Efficiency of a Class B Amplifier, Complementary Symmetry.			
	[Electronic Devices and Circuits by Allen Mottershead: 15-1, 15-2, 16-1, 16-2, 16-3, 16-4, 19-1, 19-2, 19-11, 19-12, 19-13, 20-1, 20-2, 20-3, 20-4, 20-5, 20-10] Related Numerical			

2.	Operational Amplifiers:	
	Operational Amplifier Characteristics: Basic Differential amplifier analysis, DC Analysis of the Bipolar Diff. Amplifier, AC Analysis of the Bipolar Diff. Amplifier, The Common mode rejection ratio – CMRR, The Ideal Operational Amplifier -Op- Amp., Inverting and Noninverting Amplifiers –Ideal case, Op-Amp Parameters –Definitions, Universal Balancing Techniques, Measurements of Op- Amp Parameters, General Description of various Stages in Op-Amp.	
	Applications of operational amplifier: Summing amplifier (Inverting Mode) and Difference amplifier, The Integrator and Differentiator, Current to Voltage Converter, Voltage to Current Converter- Floating Load, Logarithmic Amplifier using diode (Basic only).	25%
	[Integrated Circuits by K R Botkar : 7.1, 7.1.1, 7.1.2, 7.4.1, 7.4.2, 7.4.3, 7.4.4, 7.5.1, 8.3.1, 8.3.2, 8.4.2, 8.5.3] Related Numerical	
3.	Number Systems, Gates and Logic Family:	
	Number systems and codes: Decimal and binary odometer, Binary numbers, Use of binary numbers, Binary to decimal conversion, Decimal to Binary conversion, Hexadecimal numbers, Hexadecimal Binary conversion, Hexadecimal to decimal conversion, Decimal to hexadecimal conversion, BCD numbers, The ASCII code.	
	Gates: Inverters, OR gates, AND gates, Boolean algebra, NOR gates, De Morgan's first theorem, NAND gates, De Morgan's Second theorem, EXCLUSIVE-OR gates, EXCLUSIVE-NOR gates.	25%
	TTL circuits: Digital integrated circuits, 7400 devices, TTL characteristics. [Digital Computer Electronics by P Malvino and J A Brown : 1-1, 1 2, 1-4, 1-5, 1-7, 1-8, 1-9, 1-10, 1-11, 1-12, 1-13, 2-1, 2-2, 2-3, 2-4, 3 1, 3-2, 3-3, 3-4, 3-5, 3-7, 4-1, 4-2, 4-3]] Related Numerical	

4.	Flip-Flops, Registers and Counters:	
	Flip –Flops: Introduction, RS latches, Level clocking, D latches, Edge triggered D flip-flops, Edge triggered JK flip-flops, JK master slave flip flop.	
	Registers: Buffer registers, Shift registers, Controlled shift registers.	25%
	Counters: Ripple counters, Synchronous counters, Ring counters, MOD-10 counter, down counter.	
	[Digital Computer Electronics by P Malvino and J A Brown: 7-1, 7 2, 7-3, 7-4, 7-5, 7-6, 8-1, 8-2, 8-3, 8-4, 8-5, 8-6, 8-7] Related Numerical	

Teaching- Learning Methodology	Direct Teaching through Chalk-Walk and Talk ICT enabled teaching Question-Answer Class discussion led by teacher/students Case Studies Literature review Problem solving activities Debate Collaborative and Co-operative Learning Think Pair Share Jigsaw Inquiry Based Learning Panel Discussion Project Based Learning Flipped Classroom
	ş

	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Continuous Assessment in the form of Internal Written Test, Quizzes, Assignments, Active learning, Viva-voce, Seminars, Attendance (As per NEP Guideline)	50%	
2.	University Examination	50%	

Co	Course Outcomes: On the successful completion of the course, the students will be able to		
1	Explain Transistor amplifiers and their analysis for different range of frequencies.		
2	Describe the power capabilities of transistor power amplifiers and various techniques to achieve higher efficiency.		
3	Understand the basic structure of Operational Amplifier and its analysis with its wide applications.		
4	Analyse different number systems and different types of gates, flip-flops, registers and counters which are essential components of digital electronic technology.		

Sug	Suggested References:		
Sr. No.	References		
1.	Allen Mottershead, Electronic Devices and Circuits, (2011), PHI Pvt. Ltd., New Delhi.		
2.	K R Botkar, Integrated Circuits, Ninth Edition, (Fifth Reprint 2001), Khanna Publishers, New Delhi.		
3.	P. Malvino and J. A. Brown, (Third Edition 2004), Digital Computer Electronics, Tata McGraw Hill Publishing Co. Ltd., New Delhi.		
4.	G K Mittal, Electronic Devices and Circuits, (Twenty Third Edition), Khanna Publishers, New Delhi		
5.	Jacob Millman and Christos C. Halkias, Integrated electronics: Analog and Digital Circuits and Systems, (2009) Tata McGraw Hill Pub. Co. Ltd, New Delhi		
6.	P Malvino, Electronic Principles (Seventh Edition), Tata McGraw Hill Pub. Co. Ltd, New Delhi		
7.	B L Theraja, Basic Electronics (Solid State), (Reprint 2007), S. Chand & Company Ltd.		

On-line resources to be used if available as reference material	
On-line Resources:	
https://nptel.ac.in/courses/115/102/115102014/	
https://nptel.ac.in/courses/115/102/115102014/	
Online lectures of Power Amplifiers and Operational Amplifiers are available on You also.	uTube
https://nptel.ac.in/courses/108/105/108105132/	
12 weeks course with downloadable video lectures of Digital Electronic Circuits.	
Glossary of Analog and Digital Circuits:	
Resource Type: Reference	
https://wiki.analog.com/university/courses/electronics/text/glossary	
This website contains a glossary of electronic terms used in analog electronics. It prov	vides
quick reference to the frequently used definitions.	
http://www.pmcgibbon.net/teachcte/electron/degloss1.htm	
This website provides quick reference to the terms used in digital electronics. The glo	ossary
can be browsed and searched, and contributions of new entries are welcome.	
Analog and Digital Electronics: History	
Resource Type: Other educational resources	
https://en.wikipedia.org/wiki/Analogue_electronics	
https://en.wikipedia.org/wiki/Digital_electronics	
https://www.elprocus.com/know-about-brief-history-of-electronics-and-their-generations/	
A brief history and the development of electronics is provided.	
Introduction to Electronic circuits:	
Resource Type: Lecture notes	
https://www.ee.iitb.ac.in/~sequel/course_material.html	
Lecture notes slides, notes on selected topics, related lab sheets and Java application	
simulations are available for the ready reference.	
Your source for the latest research news:	
nttps://www.sciencedaily.com/news/matter_energy/electronics/	

Bachelor of Science B.Sc. Physics Practical (Semester – V)

Course Code	US05MAPHY03	Title of the Course	Physics Practical
Total Credits of the Course	04	Hours per Week	08
Course Objectives:	of the theoretic 2. To have worki electronic circu 3. To have the w state physics, e	al courses. ng knowledge o uits. orking knowled lectrodynamics,	ments based on principles and applications f equipment like CRO, Interferometer and ge of experiments related to optics, solid analog and digital electronics etc. ms through numerical methods.

Course Content		
Description		
SECTION A:		
1. Phage angle by C.R.O		
2. Constants of ballistic galvanometer	50%	
3. Low resistance by ballistic galvanometer		
4. Four probe method		
5. Michelson interferometer (λ measurement)		
6. Phonon dispersion relation of monoatomic chain		
7. Hall effect (constant magnetic field)		
SECTION B:		
1. Astable Multivibrator		
2. Monostable Multivibrator		
3. Operational amplifier (Inverting and non-inverting modes)	50%	
4. Frequency response of OpAmp		
5. Logic gates (discrete and IC based AND, OR, NOT NAND and NOR gates)		
6. Diagonalization of a matrix (Jacobi method)		
7. Class A amplifier		

NOTE Minimum 80% practical should be performed. To provide flexibility up to the maximum of 20% of total experiments can be replaced/ added to the list by respective colleges

Eval	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Continuous Assessment in the form of Internal Written Test, Quizzes, Assignments, Active learning, Viva-voce, Seminars, Attendance (As per NEP Guideline)	50%	
2.	University Examination	50%	

Cou	Course Outcomes: Having completed this course, the learner will be able to		
1.	various properties of materials like resistivity, low resistance, energy band gap, thickness of film, wavelength of monochromatic light etc.		
2.	deduce numerical methods to analyze the observational data as well as the applications of numerical methods to solve dynamics of Physics problems.		
3.	study various oscillatory circuits, transistor amplifiers, operational amplifiers and digital circuits.		

Sugge	Suggested References:		
Sr. No.	References		
1.	Advanced Practical Physics for students B L Worsnop and H T Flint, Methuen and Co. Ltd., London		
2.	B.Sc. Practical Physics C L Arora, S. Chand & Co. Ltd., New Delhi		
3.	Advanced Practical Physics M S Chauhan and S P Singh, Pragati Prakashan, Meerut		
4.	Advanced Practical Physics S L Gupta and V Kumar, Pragati Prakashan, Meerut		
5.	An advanced course in practical Physics D Chattopadhyay and P C Rakshit, New Central book agency Pvt. Ltd		

On-line resources to be used if available as reference material

On-line Resources

CONSTANTS OF BALLISTIC GALVANOMETER

https://www.youtube.com/watch?v=Z5Z1Y1tXs9c http://www.stpius.ac.in/crm/assets/download/Practical_paper-2_-_Continued.pdf

LOW RESITANCE BY BALLISTIC GALVANOMETER http://www.stpius.ac.in/crm/assets/download/Practical_paper-2_-_Continued.pdf

FOUR PROBE METHOD

https://vlab.amrita.edu/?sub=1&brch=282&sim=1512&cnt=3

MICHELSON INTERFEROMETER

https://vlab.amrita.edu/?sub=1&brch=189&sim=1106&cnt=1#:~:text=The%20Michelson%20i nterferometer%20is%20the,called%20an% https://www.youtube.com/watch?v=lzBKIY4f1XA

DIAGONALIZATION OF MATRIX BY JACOBI METHOD

https://www.youtube.com/watch?v=YfTrNElThDs https://www.patnauniversity.ac.in/e-content/science/physics/MScPhy58.pdf

ASTABLE AND MONOSTABLE MULTIVIBRATORS https://www.electronics-tutorials.ws/sequential/seq_3.html

INVERTING AND NON-INVERTING OPAMP

https://www.electronics-tutorials.ws/opamp/opamp_2.html https://www.electronics-tutorials.ws/opamp/opamp_3.html

FREQUENCY RESPONSE OF OPAMP

https://www.allaboutcircuits.com/video-tutorials/op-amp-basics-frequency-response/

Bachelor of science B.Sc. Physics Semester-5

Course Code	US05MIPHY01	Title of the Course	Thermodynamics
Total Credits of the Course	2	Hours per Week	2

Course Objectives:	1. To provide the fundamentals of thermodynamics and their applications to study of thermal characteristics of different states of matter.
	2. To provide the fundamental concept of Classical Statistical Mechanics.
	3. To create awareness about the importance of partition functions and statistical distribution of particles for the better understanding of many body systems.

	Course Content			
Unit	Description	Weightage (%)		
1.	 Thermodynamical Laws and Entropy Refrigerator; Clausius statement of the second law, Carnot's theorem and corollary, The Thermodynamic temperature scale, Absolute zero and Carnot Efficiency, Equality of ideal-gas and Thermodynamic temperatures. Entropy: Reversible part of second law (Clausius' theorem), Entropy, Entropy of an ideal gas, T-S diagram, Entropy and reversibility, Entropy and irreversibile process, Entropy and nonequilibrium states, Principle of increase of entropy, Application of the entropy principle, Entropy and disorder. Heat and Thermodynamics By: M W Zemansky & R H Dittman: [6.7, 7.4, 7.5, 7.6, 7.7, 8.1, 8.2, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.10, 8.11, 8.12, 8.13]	50%		
2.	 Heat and Thermodynamics Pure substances: PT diagram for a pure substance; Phase diagram, Equations of state, T-S diagram for a pure substance Characteristic functions, Enthalpy, Helmholtz and Gibb's functions, Two mathematical theorems, Maxwell's Relations, T-dS equations, Internal Energy equations, Heat capacity equations. Heat and Thermodynamics By: M W Zemansky & R H Dittman [9.2, 9.4, 9.9, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8,] 	50%		

Teaching-	Direct Teaching through Chalk-Walk and Talk
Learning	ICT enabled teaching
Methodology	Question-Answer
	Class discussion led by teacher/students
	Case Studies
	Literature review
	Problem solving activities
	Debate
	Collaborative and Co-operative Learning
	Think Pair Share
	Jigsaw
	Inquiry Based Learning
	Panel Discussion
	Project Based Learning
	Flipped Classroom
	Blended Learning designs
	Concept Mapping

	Evaluation Pattern	
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Continuous Assessment in the form of Internal Written Test, Quizzes, Assignments, Active learning, Viva-voce, Seminars, Attendance (As per NEP Guideline)	50%
2.	University Examination	50%

Co	Course Outcomes: Having completed this course, the learner will be able to		
1.	The laws and mathematical formulations of thermodynamics, the concept of entropy etc.		
2.	The behaviour of different states of matter under thermal environment.		
3.	The fundamental concept of statistical mechanics like phase space, micro canonical ensemble as isolated system and canonical ensembles which allows exchange of energy.		
4.	The partition functions and MB, BE, FD statistical distribution of particles with distinct intrinsic properties such as classical gas, Fermionic gas and Bosonic gas etc.		

Sugge	Suggested References:		
Sr. No.	References		
1.	Heat & Thermodynamics Mark W. Zemansky & R H Dittman (7 th Edition) McGraw- Hill Book Company, Inc.		
2.	Heat and Thermodynamics Brij Lal and Subrahmanyam. S Chand Publication.		
3.	Thermal Physics by A. B. Gupta, H. P. Roy (New central Publication)		

On-line resources to be used if available as reference material

On-line Resources

- <u>https://youtu.be/99W1irInFUY?si=tnOXHYalJ9FGQ2h_</u>
- <u>https://en.wikipedia.org/wiki/Clausius_theorem</u>
- https://en.wikipedia.org/wiki/Temperature%E2%80%93entropy_diagram#:~:text=I
 n%20thermodynamics%2C%20a%20temperature%E2%80%93entropy,the%20grap
 h%20of%20a%20curve.
- <u>https://en.wikipedia.org/wiki/Helmholtz_free_energy</u>
- <u>https://www.youtube.com/watch?v=fZmP2o9LPz8</u>

Bachelor of Science B.Sc. Physics Practical (Semester – V)

Course Code	US05MIPHY02	Title of the Course	Physics Practica	1
Total Credits of the Course	02	Hours per Week	04	
Course Objectives:	applications. 2. To have worki and electronic 3. To have the	ng knowledge o circuits. e working k ics, optics, mecl	experiments based on proof equipment like thermocoup nowledge of experiments nanics, electrodynamics, analog	ple, telescope related to
		Course Con	itent	
-				Weightage (%)
1. To calibrate thermocouple using potentiometer (///)				(,,,)
2. Velocity of sound by resonance tube				
3. Study of transformer parameters				
4. Resolving power of telescope				
5. 'L' by Owen's bridge 100%			100%	
6. Characteristics of LDR				
7. Numerical differentiation				
8. To determin	8. To determine Boltzmann's constant using PN junction diode			
9 Characteristics of BIT in CE configuration				

9. Characteristics of BJT in CE configuration

NOTE	Minimum 80% practical should be performed. To provide flexibility up to the maximum of 20% of total experiments can be replaced/ added to the list by respective colleges
	list by respective coneges

	Evaluation Pattern	
Sr. No.	Details of the Evaluation	Weightage
1.	1. Internal Continuous Assessment in the form of Internal Written Test, Quizzes, Assignments, Active learning, Viva-voce, Seminars, Attendance (As per NEP Guideline)	
2.	University Examination	50%

Cou	Course Outcomes: Having completed this course, the learner will be able to		
1.	various characteristics of velocity of sound, resolving power of telescope, light dependent resistor etc.		
2.	deduce numerical methods to analyze the observational data as well as the applications of numerical methods to solve dynamics of Physics problems.		
3.	study various oscillatory circuits, transistor characteristics, diode circuits and bridge circuits.		

Suggested References:

Sr. No.	References
1.	Advanced Practical Physics for students
	B L Worsnop and H T Flint, Methuen and Co. Ltd., London
2.	B.Sc. Practical Physics
	C L Arora, S. Chand & Co. Ltd., New Delhi
3.	Advanced Practical Physics
	M S Chauhan and S P Singh, Pragati Prakashan, Meerut
4.	Advanced Practical Physics
	S L Gupta and V Kumar, Pragati Prakashan, Meerut
5.	An advanced course in practical Physics
	D Chattopadhyay and P C Rakshit, New Central book agency Pvt. Ltd

On-line resources to be used if available as reference material

On-line Resources

THERMOCOUPLE

https://alllabexperiments.com/wp-content/uploads/2020/12/Thermocouple-Caliberation-All-Lab-Experiments.compressed_compressed.pdf

FOUR PROBE METHOD

https://vlab.amrita.edu/?sub=1&brch=282&sim=1512&cnt=3

https://vlab.amrita.edu/?sub=1&brch=282&sim=1512&cnt=3

'Y' BY KOENIG'S METHOD

https://www.scribd.com/document/773198194/Young-s-Modulus-Koenig-s-Method

https://www.youtube.com/watch?v=V_z0AgbyfeM

RESOLVING POWER OF TELESCOPE

https://www.youtube.com/watch?v=FeIdFtcYQXg

LIGHT DEPENDENT RESISTOR

https://www.electrical4u.com/light-dependent-resistor-ldr-working-principle-of-ldr/

SOLAR CELL CHARACTERISTICS

https://www.iitr.ac.in/departments/PH/uploads/Teaching%20Laboratory/Thermal/2.%20solar %20cell.pdf

https://www.youtube.com/watch?v=1BlUC8nYuTs

Bachelor of science B.Sc. Physics Semester-5

Course Code	US05MIPHY03	Title of the Course	Renewable Energy Sources
Total Credits of the Course	2	Hours per Week	2

Course Objectives:	1. To make the students aware about the different renewable energy sources such as solar, geothermal, wind and fuel cells and technological advancements in this field.
	2. To make the students aware of the importance of using nonconventional energy resources and their utilization for the present day and future energy needs.

	Course Content			
Unit	Description	Weightage (%)		
1.	Solar Thermal Energy Conversion Systems Introduction, Subsystems, Solar Thermal Collectors, Characteristics feature of a collectors, Important aspects of solar thermal Collectors, Collector Efficiency, Simple Flat plate Collectors, Installation of Flat Plate Collectors, Guidelines for Installation, Shadow Effect, Cosine loss factor and reflective Loss Factor, Parabolic through collectors, Paraboloidal dish collectors, Fresnel lens point focus collector, Heliostats with Central Receiver. Solar Photovoltaic Systems: Introduction to Photovoltaic systems, Merits and Limitations of Solar PV Systems, Principle of a Photo- Voltaic cell, V-I characteristics of Solar Cell, Interconnections of solar cells, Efficiency of a solar cell, Configuration of a solar PV Panel Energy Technology Nonconventional, Renewable and Conventional S Rao and Dr. B B Parulekar [4.1, 4.2, 4.3, 4.3.1, 4.3.2, 4.5, 4.6, 4.7, 4.8, 5.1, 5.2, 5.5, 5.6, 5.7, 5.8, 5.10]	50%		
2.	Fuel Cells and Fuel Cell Power Plants Introduction, Advantages of Fuel Cell Power Sources, Theory of Electro-Chemistry applied to fuel Cells, Principle and Operation of fuel Cells, H2-O2 Acidic fuel Cell, Alkaline H2-O2 fuel Cell, Classification and Types of Fuel Cells, Fuels for Fuel Cells, Performance Characteristics of Fuel Cells-Voltage Vc-Current Density I _d Characteristic (Polarization Curve), Power per cell P _c , Cell Efficiency. Energy Technology Nonconventional, Renewable and Conventional S Rao and Dr. B B Parulekar [23.1, 23.2, 23.3, 23.4, 23.5, 23.6, 23.8]	50%		

Teaching-	Direct Teaching through Chalk-Walk and Talk
Learning	ICT enabled teaching
Methodology	Question-Answer
	Class discussion led by teacher/students
	Case Studies
	Literature review
	Problem solving activities
	Debate
	Collaborative and Co-operative Learning
	Think Pair Share
	Jigsaw
	Inquiry Based Learning
	Panel Discussion
	Project Based Learning
	Flipped Classroom
	Blended Learning designs
	Concept Mapping

	Evaluation Pattern			
Sr. No.				
1.	Internal Continuous Assessment in the form of Internal Written Test, Quizzes, Assignments, Active learning, Viva-voce, Seminars, Attendance (As per NEP Guideline)	50%		
2.	University Examination	50%		

Course Outcomes: Having completed this course, the learner will be able to understand	
1.	The various sources of renewable energy and their conversion methods.
2.	They will be able to gain the knowledge of various fuel cells and power plants.

Sugges	Suggested References:		
Sr. No.	References		
1.	Energy Technology (Nonconventional, Renewable and Conventional) S Rao and Dr. B B Parulekar Khanna Publishers (3 rd Edition), 2004.		
2.	Instrumentation Measurement and Analysis B C Nakra and K K Chaudhary Tata McGraw Hill Publishing Co. Ltd., New Delhi		

On-line resources to be used if available as reference material

On-line Resources

https://en.wikipedia.org/wiki/Solar_thermal_collector

https://epgp.inflibnet.ac.in/epgpdata/uploads/epgp_content/S000014ER/P000277/M025048/E T/1511327817Paper7_EnergyEnv_module_15_etext-SolarCollectors.pdf

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=video&cd=&cad=rja&uact=8& ved=2ahUKEwihp9eF9cqLAxV2ulYBHeZfL1kQtwJ6BAgXEAI&url=https%3A%2F%2Fw ww.youtube.com%2Fwatch%3Fv%3DhGZva0QYN8A&usg=AOvVaw13c-CXitq0sBOb3HZnxA8j&opi=89978449

https://en.wikipedia.org/wiki/Photovoltaic_system

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=video&cd=&cad=rja&uact=8& ved=2ahUKEwjdi_Pe9cqLAxW2hlYBHXrNIDQQtwJ6BAgPEAI&url=http%3A%2F%2Fdig imat.in%2Fnptel%2Fcourses%2Fvideo%2F117108141%2FL01.html&usg=AOvVaw1Ykf6N-EUCzj0IRbyefpT7&opi=89978449

https://en.wikipedia.org/wiki/Fuel_cell

https://en.wikipedia.org/wiki/Alkaline_fuel_cell#:~:text=Alkaline%20fuel%20cells%20consu me%20hydrogen,the%20potential%20to%20reach%2070%25.&text=NASA%20has%20used %20alkaline%20fuel,and%20on%20the%20Space%20Shuttle

 $\underline{https://www.sciencedirect.com/topics/earth-and-planetary-sciences/hydrogen-oxygen-fuelcells}$

SARDAR PATEL UNIVERSITY

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.11) Syllabus with effect from the Academic Year 2025-2026

Bachelor of Science

B.Sc. Physics Practical (Semester – V)

Course Code	US05MIPHY04	Title of the Course	Physics Practical	l		
Total Credits of the Course	02	Hours per Week	04			
Course Objectives:						
		Course Con	tent			
	Description Weightage					
1. To find visc	1. To find viscosity co-efficient of liquid using co-axial viscometer					
2. To determin	2. To determine charge of electron 'e' (Benzene, hollow prism)					
3. To find energy bandgap of a semiconducting material						
4. Frequency and phase angle by CRO						
5. e/K by powe	5. e/K by power transistor100%					
6. Least square error fitting method						
7. Solar cell characteristics						

8. Planck's constant by LED

9. 'L' by Maxwell's bridge

Minimum 80% practical should be performed. To provide flexibility up to the maximum of 20% of total experiments can be replaced/ added to the list by respective colleges
list by respective colleges

Eval	Evaluation Pattern					
Sr. No.						
1.	Internal Continuous Assessment in the form of Internal Written Test, Quizzes, Assignments, Active learning, Viva-voce, Seminars, Attendance (As per NEP Guideline)	50%				
2.	University Examination	50%				

Cou	Course Outcomes: Having completed this course, the learner will be able to			
1. calculate various properties of materials like resistivity, band gap of semiconductor				
2.	deduce numerical methods to analyze errors in measurement.			
3.	study solar cell, cathode ray oscilloscope, power transistor light emitting diode etc.			

Sugge	Suggested References:		
Sr. No.	References		
1.	Advanced Practical Physics for students B L Worsnop and H T Flint, Methuen and Co. Ltd., London		
2.	B.Sc. Practical Physics C L Arora, S. Chand & Co. Ltd., New Delhi		
3.	Advanced Practical Physics M S Chauhan and S P Singh, Pragati Prakashan, Meerut		
4.	Advanced Practical Physics S L Gupta and V Kumar, Pragati Prakashan, Meerut		
5.	An advanced course in practical Physics D Chattopadhyay and P C Rakshit, New Central book agency Pvt. Ltd		
6.	An Advanced Course In Practical Physics D Chattopadhyay and P C Rakshit, New Central book agency Pvt. Ltd.		

On-line resources to be used if available as reference material

On-line Resources

SUSCEPTIBILITY OF PARAMAGNETIC/FERROMAGNETIC SOLUTION BY QUINK'S METHOD

https://www.holmarc.com/magnetic_susceptibility_quinke.php#:~:text=The%20Quincke's%20 Method%20is%20used,a%20non%2Duniform%20magnetic%20field.&text=Measuring%20thi s%20rise%20enables%20to%20determine%20the%20susceptibility%20of%20the%20solution. https://www.youtube.com/watch?v=yzgdq8uUfO4

PHASE ANGLE BY C.R.O.

https://www.tutorialspoint.com/electronic_measuring_instruments/electronic_measuring_instru ments_lissajous_figures.htm

https://www.uoanbar.edu.iq/eStoreImages/Bank/5301.pdf

TO DETERMINE BOLTZMANN'S CONSTANT USING PN JUNCTION DIODE https://www.vlab.andcollege.du.ac.in/phySc/electronics/boltzmanC/boltzmanF.html

e/K BY POWER TRANSISTOR

https://www.youtube.com/watch?v=lw09mNgzMGI https://www.tumblr.com/bingqingli/42926778926/ek-and-band-gap

LOAD LINE AND DETERMINATION OF Q POINT USING BJT

https://www.tutorialspoint.com/basic_electronics/basic_electronics_transistor_load_line_analys is.htm

SARDAR PATEL UNIVERSITY

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.11) Syllabus with effect from the Academic Year 2025-2026

Bachelor of Science B.Sc. Physics Semester–V

Course Code	US05SEPHY01	Title of the Course	Hands-on Experimental Skills in Physics
Total Credits	02	Hours per	04
of the Course		Week	
0	1 77 1 1	1 .	
Course Objectives:	 designing, bui systems. 2. To familiarize specifications. 3. To develop ski subsystems usi 4. Develop skills its presentation 	lding, testing, a e students with ill for Design a ng various integ of writing a strue.	ce and reinforce theoretical knowledge by and troubleshooting real-world electronic h various electronic devices and their nd Testing of different types of electronic grated circuits. Auctured technical document for project and alts and their rectification.

Course Content	
Description	Weightage (%)
 Adjustable Flashing/Blinking LED Circuit using 555 Timer IC Police Lights Themed Flashing LED Circuit Using 555 IC Touch On-Off Sensor Switch Circuit Using 555 Timer IC Model Traffic Lights Circuit Using 555 IC 	
 Simple Water Level Indicator with Alarm Using Transistors Water Level Alarm Using 555 Timer 	100%
 Panic Alarm Circuit Rain Alarm Project: Rain Detector Project Automatic Streat Light Control Circuit using LDB & Transistor BC 547 	
 9. Automatic Street Light Control Circuit using LDR & Transistor BC 547 10. Half Adder Circuit Diagram with Logic IC 11. Full Adder Circuit Diagram with Logic IC 	

NOTE	Minimum 80% practical should be performed. To provide flexibility up to the maximum of 20% of total experiments can be replaced/ added to the
	list by respective colleges

Sr. No.	Work done	Weightage as per 50 Marks
1.	Project demonstration	10 Marks
2.	Project presentation	10 Marks
3.	Student involvement and understanding	10 Marks
4.	Viva-voce	10 Marks
5.	Project report	10 Marks
	Total Marks	50 Marks

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Continuous Assessment in the form of Understanding project objectives, Background knowledge of Project/ Subject, Assignments, Active learning, Viva-voce, Knowledge on the Content, Attendance (As per NEP Guideline)	50%
2.	University Examination	50%

Co	urse Outcomes: Having completed this course, the learner will be able to
1.	design, test and implement any Analog or Digital circuit by making use of the various tools and instruments available in the Electronics Workshop.
2.	enable students to understand, analyze, design, and implement electronic circuits and systems.
3.	apply their knowledge to solve real-world problems, develop innovative solutions, and adapt to changing project requirements

Suggested References:		
Sr. No.	References	
1.	Electronics Lab Manual, Volume I K. A. Navas, PHI, 5th Edition, 2015	
2.	Electronics Projects (Volume 1 to 19) Ramesh Chopra for Electronics for You (EFY) Enterprises Pvt. Ltd., New Delhi	
3.	Electronics Projects for Beginners Nikhil Shukla, V & S Publishers, 2017	
4.	Electronic Projects in Workshop R.A Penfold, Newnes Technical Books	

On-line resources to be used if available as reference material

On-line Resources

Adjustable Flashing/Blinking LED Circuit using 555 Timer IC <u>https://elonics.org/adjustable-led-flasher-using-555-timer/</u>

Police Lights Themed Flashing LED Circuit Using 555 IC <u>https://elonics.org/police-lights-themed-flashing-led-circuit-using-555-ic/</u>

Touch On-Off Sensor Switch Circuit Using 555 Timer IC <u>https://elonics.org/touch-on-off-sensor-switch-using-555-timer-ic/</u>

Model Traffic Lights Circuit Using 555 IC <u>https://elonics.org/model-traffic-lights-circuit-using-555-ic/</u>

Simple Water Level Indicator with Alarm Using Transistors Water Level Alarm Using 555 Timer https://www.electronicshub.org/water-level-alarm-using-555-timer/

Panic Alarm Circuit <u>https://www.electronicshub.org/panic-alarm/</u>

Rain Alarm Project: Rain Detector Project https://www.electronicshub.org/rain-alarm-project/

Automatic Street Light Control Circuit using LDR & Transistor BC 547 https://www.electricaltechnology.org/2013/04/automatic-street-light-control.html

Half Adder Circuit Diagram with Logic IC <u>https://theorycircuit.com/digital-electronics/half-adder-circuit-diagram-with-logic-ic/</u>

Full Adder Circuit Diagram with Logic IC <u>https://theorycircuit.com/digital-electronics/full-adder-circuit-diagram-with-logic-ic/</u>
