

B.Sc.(Microbiology) Semester V

Course Code	US05MAMIC01	Title of the Course	Bacterial Genetics
Total Credits of the Course	04	Hours per Week	04
Course Objectives:	 The course introducing graduate st Toimpart of in prokary material, tr To know mechanism Tomake st helps to un evolution, 	is structured wi g basic concepts udents of Micro letailed knowled otes, steps of ce canscription and about mutations. udents understand cellular regulation	ith the aim to fulfil the objective of of molecular biology to the under biology. Ige regarding flow of genetic information ntral dogma of life, replication of genetic translation. Ins in genetic material and its repair nd that knowledge of molecular genetics nisms of gene transfer among prokaryotes, ons and many other biological processes.

Course	Course Content			
Unit	Description	Weightage* (%)		
1.	 Gene structure and Replication in prokaryotes a) DNA as genetic material b) Structure and chemistry of DNA, forms of DNA c) DNA replication in bacteria: DNA replication is semi conservative, DNA replication initiates from a single origin, replication machinery, events at replication fork, termination of replication, and replication of linear chromosomes. d) Models of replication: Cairn's (Ø) model and Rolling Circle (σ) model. e) Bacterial gene structure 	25%		

2.	 Gene Expression a) Central Dogma of gene expression and Teminism b) Transcription in bacteria: Introduction, Bacterial RNA polymerase, and promoter, stages of transcription: initiation, elongation, rho factor dependent and factor independent termination of transcription. c) Introduction to t-RNA and Ribosome: structure and role d) Genetic code: Introduction, Triplet nature, Polarity, Degeneracy, Wobble phenomenon, near universality, Initiation and termination codons. e) Translation: Activation of amino acids and charging of t-RNA, Initiation of protein synthesis, elongation of polypeptide chain, termination of protein synthesis. f) Regulation of transcription initiation : Lactose operon 1.Negative Transcriptional Control of Inducible Genes 2. Catabolite repression in and positive control in <i>E.coli</i> 	25%
3.	 Gene Variation (mutations) and repair. (a) Introduction, spontaneous mutations, induced mutations, Evidence of spontaneous mutation (fluctuation test, replica plate technique) (b) Types of mutations (c) Chemical and physical mutagenic agents: U.V. radiation, 5BU, Nitrous acid, EMS, acridine dyes (d) Detection and isolation of mutants: auxotrophic mutants, antibiotic resistance mutants. (e) Mutagen and carcinogen identification (Ame's test) (f) DNA repair: Proof reading, mismatch, Excision, Direct, Recombination and SOS. 	25%

4.	Genetransfer among bacteria (a) Fundamentals: Zygote, Allele, Recombination, Horizontal and Vertical gene transfer, formation of merozygote and its fate. b) Bacterial plasmids: General properties, functional types of plasmid, maintenance of plasmids c)Transposable elements: Insertion sequences, composite transposons, Mechanisms of transposition: simple and replicative transposition d) Gene transfer mechanisms i) Transformation: Introduction, Definition, competence, mechanism of transformation in <i>Streptococcuspneumoniae, Neisseria gonnorhea</i> and <i>Haemophillus influenzae</i> ii)Transduction: Introduction, Generalized and Specialized transduction iii) Bacterial Conjugation: Introduction, Role of F-plasmid and	25%
	iii) Bacterial Conjugation: Introduction, Role of F-plasmid and secretary system, F^+X F^- , Hfr Conjugation, F' conjugation.	

Teaching- Learning W Methodology H	The teaching- learning process will consist of lectures (large group) in which the teacher will use aids such as chalk as well as make power point presentation to introduce the topics encompassing the basic concepts of the subject. Model making of DNA and RNA structures, Seminars, poster presentations, Visualization of various mechanisms by showing educational videos from internet. Arranging debates in class. Performing experiments in laboratory.
--	--

Evalu	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance	50%	
2.	University Examination	50%	

Cou	rse Outcomes: Having completed this course, the learner will be able to
1.	Understand the importance of the master molecule "nucleic acid", get knowledge of DNA and RNA structures, genome organization of prokaryotes, gene structure and function.
2.	Understand about mechanism of prokaryotic DNA replication and machinery of DNA replication.
3.	Gets knowledge regarding Central Dogma of gene expression and all steps of the central dogma in detail like transcription, translation, replication and reverse transcription. Know about regulation of gene expression.
4	Understand about various RNAs, Ribosome, genetic code and their role in protein synthesis.
5	Understand how mutations and repair of genetic material influence evolutionary process. And will get information regarding chemical and physical mutagenic agents, types of mutations and DNA repair.
6	Understand recombination of bacteria. Understand about the three well known mechanisms by which the genetic material is transferred among the microorganisms namely transformation transduction and conjugation.
7	Are able to describe different types of plasmids and transposable elements and understand the consequences of recombination

Sugges	Suggested References:		
Sr. No.	References		
1.	Prescott L, Harley J P, and Klein D A, Microbiology, 9 th edition. Wm C.Brown - McGraw Hill, Dubuque, IA ltd.		
2.	General Microbiology, by C.B. Powar and H.F. Daginawala, volume-I, Himalaya Publishing House, Reprint-2002		
3.	Principles of Molecular Biology by Veer Bala Rastogi Revised and enlarged 2 nd edition, MEDTECH.		
4.	Biochemistry by Lehninger, Nelson and Cox, 4 th Edition.		
5.	Principles of Microbiology 2 nd edition– R.M. Atlas		

B.Sc.(Microbiology)Semester-V

) · · · • · · ·		
Course Code	US05MAMIC02	Title of the	Microbial Metabolism
		Course	
Tota lCredits	4	Hours per	4
of the Course		Week	

Course	To make the students familiar with:		
Objectives:	Microbial Metabolism		
-	Principle of Thermodynamics		
	• The structure, Role and Different modes of ATP generation in bacteria.		
	• The enzymes, enzyme kinetics and their regulation.		
	• The introduction of the Biochemical pathways for degradation and		
	biosynthesis of Carbohydrate, Lipid & Proteins as well as biosynthesis of		
	peptidoglycan		
	• Photophosphorylation and CO ₂ Assimilation		

Course	CourseContent				
Unit	Description	Weightage*			
		(%)			
1.	Principles of bioenergetics	25			
	a) Biochemical thermodynamics				
	b) ATP (Structure and role)				
	c) Biochemical mechanisms of ATP generation:				
	-Oxidative phosphorylation:- ETC: organization, components and				
	Mechanism of oxidative phosphorylation includes- Chemiosmotic				
	theory, ATP Synthase & Rotational catalysis				
	d) Substrate level phosphorylation				
	e) photophosphorylation (cyclic and non-cyclic)				
2.	Enzymology:	25			
	a) Enzyme Kinetics				
	i. Definition : Zero and First order reaction				
	ii. Substrate saturation curve: Michaelis -Menten Equation-				
	Equilibrium and Steady state assumption, significance of M-				
	M equation				
	iii. Definition of Km, Turn over number (K _{cat}), Specificity				
	constant(Kcat/Km)				
	iv. Double reciprocal plot				
	b) Regulation of enzyme action:				
	i. Allosteric, Covalent modification, Feedback inhibition				
	ii. Enzyme inhibition : Reversible-(Competitive, Non-				
	Competitive, Uncompetitive and Mixed), Irreversible				
	iii. Introduction to Zymogen and Isoenzymes				
	iv. Multi substrate reactions				

-			~ ~ ~
3.	Cataboli	sm	25
	a) Int	roduction	
	i. Introduction to Metabolism, Catabolism and Anabolism		
	ii.	Role of precursor metabolites in metabolism	
	b) Ca	rbohydrate Catabolism :	
	i.	EMP pathway, Regulation of Glycolysis, PP Pathway, ED pathway	
	ii.	TCA cycle and its energetic, Regulation of TCA, Anaplerotic reactions, Glyoxylate cycle	
	c) Lij	pid Catabolism:	
	i.	α , β and ω oxidation of fatty acids	
	ii.	Beta oxidation of saturated fatty acids-Palmitic acid and its energetics.	
	d) Pro	oteinCatabolism:	
	i.	Deamination: - Oxidative deamination, Transamination, Stickland reaction	
	ii.	Urea cycle	
	e) Fu	elling reaction in Anaerobic chemotrophs:	
	,	Anaerobic respiration, Fermentation	

4	Anabolism:-	25
	a) Introduction	
	i. Strategies of biosynthesis	
	ii. Methods of studying intermediary metabolism (Use of	
	Biochemical mutants, Pulse labeling technique)	
	b) Carbohydrate Biosynthesis:-	
	i. Gluconeogenesis,	
	ii. Reductive TCA cycle	
	iii. Calvin-Benson cycle	
	c) Lipids Biosynthesis:-	
	i. Biosynthesis of saturated fatty acid	
	d) Biosynthesis of aminoacids:-	
	i. Aromatic family	
	e) Biosynthesis of peptidoglycan	

Teaching-	The major teaching- learning consists of lectures and discussions (large
LearningMet	group) in which the teacher makes a use of chalk and talk as well as
hodology	powerpoint presentation and Video animation to introduce the learning
	objectives related to the basic concepts of the subject. These sessions
	incorporate space for participation and involvement of students through
	questions. The student's participation in laboratory on related theoretical
	concept is also required.

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance	50%
2.	University External Examination	50%

Cou	rse Outcomes :Having completed this course, the learner will be able to
1.	Conceptualize their understanding of Microbial Metabolism
2.	Understand the Principle of Thermodynamics
3.	Describe the structure, role and different modes of ATP generation in bacteria.
4.	Gain knowledge of Enzymes, Enzyme kinetics and their regulation.
5.	Understand the Biochemical pathways for degradation and biosynthesis of carbohydrate,
	lipid & proteins and also biosynthesis of peptidoglycan
6.	Understand the photophosphorylation and CO ₂ Assimilation

SuggestedReferences:

- Biochemistry by Lehninger, Nelson and Cox (4th edition) 1.
- Principles of Biochemistry by Zubey G. L.(1stedition) 2.
- General microbiology by Stanier R.Y. (5th edition) Biochemistry, by U. Satyanarayan (5th edition) 3.
- 4.
- Microbiology by Pelczar, Kreig&Chan (5th edition) 5.
- Enzymes Biochemistry, Biotechnology, Clinical chemistry by T. Palmer (2nd edition) 6.
- Outline of Biochemistry by Conn and Stumpf (5th edition) 7.

On-liner e sources to be used if available as reference material

B.Sc. (Microbiology) Semester V

Course Code	US05MAMIC03	Title of the Course	Microbiology Practical
Total Credits of the Course	04	Hours per Week	08

Course	• Some basic techniques to study mutation, are given with the aim to
Objectives:	full fill the objective of introducing basic concepts of molecular
	biology to the under graduate students of Microbiology.
	• To conceptualize their understanding of Microbial
	Metabolism, qualitative and quantitative analysis of bio molecules
	through various fundamental techniques like titrimetric estimation,
	colorimetric estimations and chromatographic techniques are kept.
	• To gain knowledge of enzymes, enzyme kinetics, enzyme assays,
	exercise is introduced.

Course Content based on core theory papers		
No	Practical Section-1	Weightage* (%)
1.	Study of microbicidal effect of UV rays	
2.	Isolation of anantibiotic resistant mutant bacterium. (gradient/ replica/ grid plate technique)	
3	Isolation of pigment less mutant of <i>Serratia marcescens</i> using UV radiations as mutagen	
4.	Isolation of <i>lac</i> — mutants of <i>Escherichia coli</i> using UV radiations as mutagen.	
5	Reducing sugar(Glucose/ Jaggery) estimation by Cole's method	
6	Reducing sugar (Glucose) estimation by DNS method	1000/
7.	Protein estimation by Folin's method	100%
8	Separation and identification of amino acids by Thin layer chromatography(TLC) and determination of Rf value.	
9	Substrate saturation curve: study of Km and Vmax for invertase. (Group experiment)	
10	Study of Minimum inhibitory concentration (MIC) of an antibiotic for a well isolated bacterium.	

No	Practical Section-2
11	 Study of Biochemical reactions Based on Carbon source 1. Oxidative and fermentative breakdown of glucose 2. Fermentation of Sugars: Glucose, Lactose, 3. Glucose break down products: Methyl red test, Voges Proskauer's test 4. Citrate utilization test
12	 Study of Biochemical reactions Based on Nitrogen source I. Indole production test 2. H₂S production test 3. Urea utilization test 4. Casein hydrolysis test 5. Gelatin Hydrolysis test 6. Deamination test 7. Ammonia production test 8. Nitrate reduction test
13	Study of Biochemical reactions : Other tests 1. Catalase test 2. Dehydrogenase test 3. Oxidase test

Teaching- Learning Methodology	 By briefing them with the theoretical aspects as well as providing them with the protocol (Aim, Requirements and Procedure) of the experiment to be performed using chalk and duster as well as power point presentation. Students are trained for microscope observations and its handling. Demonstrations of the practical are also carried out and care is taken for aseptic handling and skill development for microbiological work in the laboratory
--------------------------------------	---

Evaluation Pattern

Evaluation of practical at University levelrequires evaluation for minimum three exercises forperformance, well documented certified Journal and a viva voce.

Sr. No.	Details of the Evaluation	Weightage
1	Internal Written / Practical Examination (As per CBCS R.6.8.3) Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Journal, Attendance (As per CBCS R.6.8.3)	50%
2.	University Examination	50%

Cou	Course Outcomes: Having completed this course, the learner will be able to		
1.	Understand effect of mutagenic agents, phenotypic change and the event of mutations. Will get information and experience regarding chemical and physical mutagenic agents		
2.	Will get skills for analysis of bio molecules and enzyme assays. Also gets concept of metabolism of various compounds and develops idea regarding metabolic diversity in bacteria.		
3.	Skills are developed for estimations of various compounds by titrimatric and colorimetric methods.		

Sugges	Suggested References:	
Sr. No.	References	
1.	Practical protocols and guidelines given in laboratories.	
2.	Microbiology : A Practical Approach – Dr Bhavesh Patel and Dr Nandini Phanse	
3.	Experimental Microbiology - Rakesh J.Patel & Kiran R. Patel, Volume I& II	

On-line resources to be used if available as reference material

B.Sc. (Microbiology) Semester V

Course Code	US05MIMIC01	Title of the Course	Methods in Food and Dairy Microbiology
Total Credits of the Course	2	Hours per Week	2

Course	• The main objective is to ensure that the student develops a clear
Objectives:	comprehension of the concepts of applied areas of food
	microbiology. The student will get knowledge of various methods
	employed for food preservation and food quality check.

Course Content		
Unit	Description	Weightage* (%)
1.	 a) Food and microbes: i. Food as a substrate for Microorganisms. ii. Microbial flora of food and milk. iii. Microbial Spoilage of food b) Methods of food preservation: i. Use of aseptic handling. ii. High temperature: Pasteurization, sterilization, canning. iii. Low temperature: Refrigeration and freezing. iv. Dehydration v. Osmotic pressure vi. Preservatives vii. Radiations: Ionizing and non-ionizing radiation 	50%
2.	 a)Bacteriogical analysis of food : i. Direct microscopic examination, colony forming units (CFU) ii. Most probable number (MPN) iii. Identification of specific group or species of microorganisms b). Bacteriological analysis of milk : i. Grading of milk: Methylene Blue Reduction and Resazurin test ii. Determination of efficiency of pasteurization: Phosphatase test iii. Determination of MPN iv. Acid-fast staining 	50%

Teaching- Learning	The teaching-learning process will consist of lectures (large group) in which the teacher will use aids such as chalk and talk as well as make
Methodology	power point presentation to introduce the topics encompassing the basic concepts of the subject.

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3) Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	50%
2.	University Examination	50%

Course Outcomes: Having completed this course, the learner will be able to		
1.	Developed understanding of microbial flora of food and milk.	
2.	Are able to understand what food spoilage is and how food can be preserved.	
3.	Develop, understand and apply methods of food preservation	
4.	Understand the basic steps involved in microbial examination of food and milk.	

Suggested References:		
Sr. No.	References	
1.	"Microbiology" – Michael J. Pelczar, E.C.S.Chan and Noel R. Krieg, 5th edition, Tata McGRAW –HILL Edition, 1993.	
2.	A handbook of elementary Microbiology by H.A. Modi, Shanti Prakashan, Rohtak Haryana	
3.	Principles of Microbiology, Ronald m. Atlas, 2 nd Edition, Wm. C. Brown publishers, 1995	
4	"General Microbiology", by C.B. Powar and H.F. Daginawala, volume-II, Himalaya Publishing House, Reprint-2002	
On-line resources to be used if available as reference material		
Lectures and notes of NPTEL.		

B.Sc. (Microbiology) Semester V

Course Code	US05MIMIC02	Title of the Course	Practical for methods in food and dairy microbiology
Total Credits of the Course	2	Hours per Week	4

Course Objectives:	The main objective is to ensure that the student develops a clear comprehension of the concepts of applied areas of food and dairy microbiology. The student will get knowledge of various methods
	employed for food preservation and food quality check.

Course Content		
Unit	Description	Weightage* (%)
1.	Isolation of food born bacteria from food products.	
2	Isolation of spoilage microorganisms from bread, fruits and vegetables.	
3	Effect of temperature on the spoilage of food products	
4	Microbiological analysis of food and milk: Standard plate count for milk and food samples (Demonstration)	
5	Microbiological analysis of food and milk: Detection and enumeration of coliforms by MPN	
6	Microbiological analysis of milk : Determination of microbial load by use of MBRT	
7	Microbiological analysis of milk : Detection of acid-fast bacteria in milk.	

Teaching- Learning Methodology	• By briefing them with the theoretical aspects as well as providing them with the protocol (Aim, Requirements and Procedure) of the experiment to be performed using chalk and duster as well as power point presentation.
	 Demonstrations of the practical are also carried out and care is taken for aseptic handling and skill development for microbiological work in the laboratory. Possibility of various results and their interpretation can also be discussed.

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Practical Examination Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance	50%
2.	University Examination	50%

Course Outcomes: Having completed this course, the learner will be able to			
1.	Analyse quality of various samples of food and milk bacteriologically		
2.	Can isolate microbial flora of Food and develops various skill sets for bacteriological analysis.		
3	Understands importance of bacteriological analysis in real field.		

Suggested References:			
Sr. No.	References		
1.	Practical protocols and guidelines given in laboratories		
2.	Microbiology : A Practical Approach – Dr Bhavesh Patel and Dr Nandini Phanse		
3	Experimental Microbiology - Rakesh J.Patel & Kiran R. Patel, Volume I& II		
On-line resources to be used if available as reference material			

B.Sc. (Microbiology) Semester V

Course Code	US05MIMIC03	Title of the Course	Introduction to Industrial Microbiology
Total Credits of the Course	2	Hours per Week	2
Course Objectives: • The main objective is to make students aware that microorganisms influence many Industries.			

		2				
٠	Microo	rganisms are	e producers	of many	<i>important</i>	compounds.

• Also, get concept of screening of industrially important microorganisms.

Course Content				
Unit	Description	Weightage* (%)		
1.	 Microorganisms and Industry I a)Prerequisites to Practical Industrial Microbiological Processes b) Major Classes of Products and Processes c) Microorganisms Used in Industrial Processes d) Criteria for Choice of industrially important microorganisms. d) Industrial Uses of Bacteria: Lactic Acid Production • Vinegar Production • Amino Acid Production • Insulin 	50%		
2.	 Microorganisms and Industry II a) Industrial Uses of Yeasts :Alcohol Fermentations • Bakers' Yeast • Food Yeasts b) Industrial Uses of Molds: Penicillin Production • Citric Acid • Enzyme Production c) Primary screening of antibiotic producing, organic acid producing, amylase producing and growth factor producing microorganisms and Significance of secondary screening d) Fermentation process outline. 	50%		

Evaluation Pattern				
Sr. No.	Details of the Evaluation	Weightage		
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3) Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	50%		
2.	University Examination	50%		

Course Outcomes: Having completed this course, the learner will be able to			
1.	Recognize the potential of microorganisms which can produce variety of economically viable products.		
2.	Learn how microorganisms can be screened for production of various compounds.		

Suggested References:			
Sr. No.	References		
1.	"Microbiology" – Michael J. Pelczar, E.C.S.Chan and Noel R. Krieg , 5th edition, Tata McGRAW –HILL Edition,1993.		
2.	Principles of Fermentation Technology, 2nd edition P.F. Stanbury, A. Whitaker and S.J. Hall.		
3.	Fermentation Technology- Vol I – H.A. Modi.		
4	Industrial Microbiology. 1st edition, A.H. Patel.		

On-line resources to be used if available as reference material

Lectures and notes of NPTEL.

B.Sc. (Microbiology) Semester V

Course Code	US05MIMIC04	Title of the Course	Practical for Introduction to Industrial Microbiology
Total Credits of the Course	2	Hours per Week	4

Course Objectives:	The main objective is to ensure that the student develops a clear comprehension of the concepts of applied areas of food and dairy microbiology. The student will get knowledge of various methods
	employed for food preservation and food quality check.

Course Content				
Unit	Description	Weightage*		
1.	Study of Industrially important microorganism: yeast : cultivation, isolation, study of morphology and cultural characters.	100%		
2	Study of Industrially important microorganism by microscopic examination: molds like Mucor, Rhizopus, Aspergillus and Penicillium.			
3	Study of industrially important bacteria: <i>Bacillus subtilis</i> and <i>Bacillus megaterium</i> . (Isolation, cultivation, morphology and cultural characters.)			
4	Screening of amylase producing bacteria from soil.			
5	Screening of antibiotic producing bacteria from soil by crowded plate method.			
6	Screening of organic acid producing bacteria from soil.			
7	Visit to an Industry involved in production of Microbial products.			

Teaching- Learning Methodology	• By briefing them with the theoretical aspects as well as providing them with the protocol (Aim, Requirements and Procedure) of the experiment to be performed using chalk and duster as well as power point presentation.
	 Demonstrations of the practical are to be carried out and care is taken for aseptic handling and skill development for microbiological work in the laboratory. Possibility of various results and their interpretation is also discussed.

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Practical Examination Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance	50%
2.	University Examination	50%

Cou	rse Outcomes: Having completed this course, the learner will be able to
1.	Analyse quality of various samples of food and milk bacteriologically
2.	Can isolate microbial flora of Food and develops various skill sets for bacteriological analysis.
3	Understands importance of bacteriological analysis in real field.

Suggested References:	
Sr. No.	References
1.	Practical protocols and guidelines given in laboratories
2.	Microbiology : A Practical Approach – Dr Bhavesh Patel and Dr Nandini Phanse
3	Experimental Microbiology - Rakesh J.Patel & Kiran R. Patel, Volume I& II
On-line resources to be used if available as reference material	
Lectures a	nd notes of NPTEL.

B. Sc. (Microbiology) Semester V

Course Code		US05SECMIC01 Title of the Course Tools and techniques of technology		f r-DNA	
Total of the	Credits Course	2	Hours per Week	2	
Course Objectives:		• The main comprehen The studen such as the and the app recombinan	objective is to sion of the cor at will get acqua e enzymes, vector plications of clor nt products	ensure that the student devicepts of recombinant DNA inted with the tools and teors, and cloning methods that hing such as creation of DNA	velops a clear A technology. Chniques used t can be used, A libraries and
Course	e Content				
Unit	Descript	ion			Weightage* (%)
1.	r DNA ((a) Outli (b) Isola (c) Enzy (1) Restr Types, n (2) DNA (d) DNA (e) Salie (f) Vecto plasmids Artificia (g) C-DI	technology-I ines of Gene cloning tion of DNA and RI mes and steps in gen riction endonuclease comenclature, recogn a ligase and ligation a sequencing : Maxa nt features of ideal ors used in genetic e s: pBr 322, pUC 18. I chromosome vector NA library preparati	y NA ne cloning: es: nition sequences , Modifications of um Gilbert and S vector ongineering Bacteriophages ors: YAC and Ba	and cleavage pattern of cut ends anger sequencing : lambda, cosmids. AC	50%
2.	r-DNA (a) Salie (b) Meth Transfor gun, mic (c) DNA (c) DNA (c) Selec Colony (f) DNA (g) Gene	technology-II int feature of Host nods of introduction rmation, transductio cro injection a probes: on, radioactive and r tification of nucleic ction of recombinant hybridization, marked fingerprinting and a e amplification using e, procedure, types,	of DNA into Ho on, transfection non- radioactive acid: Southern b t clones: er inactivation, F applications g Polymerase ch application, adv	ost cell: , electroporation, electron labeling of probes. lotting, Northern blotting, Reporter gene ain reaction: antages and limitations.	50%

Teaching-
Learning
MethodologyThe teaching- learning process will consist of lectures (large group) in
which the teacher will use aids such as chalk as well as make power
point presentation to introduce the topics encompassing the basic concepts
of the subject. Video lectures of NPTEL and BISAG.

Evalu	nation Pattern	
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	25%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	25%
3.	University Examination	50%

Cou	rse Outcomes: Having completed this course, the learner will be able to
1.	Are able to describe different types of plasmids and understand the consequences of recombination
2.	Develop, understand and apply tools and techniques involved in Genetic engineering.
3.	Understand the basic steps involved in gene cloning and its applications

Sugges	sted References:
1.	Practical Biochemistry: Principles and Techniques – K. Wilson and Walker, 5th Edition, (Cambridge low price ed)
2.	Biotechnology – B.D.Singh, B.Sc edition, Kalyani publishers 3rd revised and enlarged reprint- 2008
3.	Biotechnology: The biological principles, M.D. Trevan and Gould. 11th reprint 2002
4	Concise notes on Biotechnology By Rajni Gupta and Tarun Rajpal, Tata McGraw Hill Education Private Limited, New Delhi, Pages:
On-line	e resources to be used if available as reference material, lectures and notes of NPTEL.

B.Sc. (Microbiology) Semester V Skill Enhancement Course

Course	e Code	US05SECMIC02	Title of the Course	Cultivation of economical Fungi (practica	ly important l)
Total of the	Credits Course	2	Hours per Week	4	<i>.</i>
or the	Course		WCCK		
Course Object	e tives:	The main for cultive mushroom employed t fungi.	objective is to e ation of impo s. Student wil for cultivation a	ensure that the student devel rtant fungi namely yeast l get knowledge of vari nd preservation of economics	lops skill sets t, mold and ous methods ally important
Course	e Content				
Unit	Descript	tion			Weightage*
1	Study of presenta	f various characters tion	and applications	of fungi. By a power point	100%
2	Demonstration of aseptic handling in a microbiology lab and steps to follow for avoid contamination in routine microbiological laboratory work.				
3	Study of	f Media for cultivati	on of fungi: yea	st, mold and mushrooms.	
4.	Isolatior mold .	n and study of morpl	nology and cultu	ral characters of yeast and	
5	Cultivat <i>Rhizopu</i>	ion of pure / previou s, Aspergillus and P	usly isolated yea <i>Penicillium</i> .	st and mold like M <i>ucor</i> ,	
6	Preserva	tion of pure culture	s of yeast and m	old.	
7	Spawn p	production for white	button mushroc	m: Agaricus bisporus	
8	Cultivat	ion of Oyster mushr	oom		
9	Cultivat	ion of paddy straw r	nushroom: Volv	ariella volvacea	
10	Mushro to under	oom cultivation or v stand commercial cu	isit to a nearby ultivation of mu	Mushroom cultivation unit shrooms	
11	Study ar	nd exhibition of vari	ous Mushrooms	available in nature and	

m	arket.	t.
Teaching- Learning Methodol	- logy	 By briefing them with the theoretical aspects as well as providing them with the protocol (Aim, Requirements and Procedure) of the experiment to be performed using chalk and duster as well as power point presentation. Demonstrations of the practical are to be carried out and care is taken for aseptic handling and skill development for microbiological work in the laboratory. Possibility of various results and their interpretation are also to be discussed.

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Practical Examination Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance	50%
2.	University Examination	50%

Cou	Course Outcomes: Having completed this course, the learner will be able to	
1.	Cultivate economically important fungi like yeast, mold and mushrooms.	
2.	Get an idea of challenges for mushroom production.	
3	Can think for a small start up for mushroom production.	

Suggested References:	
Sr. No.	References
1.	Practical protocols and guidelines given in laboratories
2.	Microbiology : A Practical Approach – Dr Bhavesh Patel and Dr Nandini Phanse

3	Experimental Microbiology – Rakesh J.Patel & Kiran R. Patel, Volume I& II
4	Experiments in Microbiology, plant pathology, tissue culture and microbial biotechnology, by K.R. Aneja, New age international publishers, reprint-2025
On-line resources to be used if available as reference material	

ſ

SARDAR PATEL UNIVERSITY Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC Syllabus with effect from the Academic Year 2025-2026

B. Sc. (Microbiology) Semester V

Course Code	LIS05SECMIC03	Title of the	Microbes in Agriculture: microbial
	USUSSECMICUS	Course	fertilizers and microbial insecticides
Total Credits	2	Hours per	2
of the Course	Z	Week	
	_		
Course Objectives:	• Aim of this skill enhancement course is to make students ready for organic farming components. How microbes are the major player o		

ourse	• Aim of this skill enhancement course is to make students ready for
bjectives:	organic farming components. How microbes are the major player of
	organic agriculture for replacement of chemical agents with natural
	biological agents like bio fertilizers and bio insecticides.

Course Content		
Unit	Description	Weightage* (%)
1.	Biofertilization and Phytostimulation:	50%
	a) Biofertilizer: an overview	
	b) Composting :Introduction, types, benifits and role of microbes	
	c) Bacterial Biofertilizers:	
	i) introduction, role in agriculture, production, selection of carrier and future prospects	
	ii) Nitrogen fixing bacteria:characteristics and functions of: Rhizobium, Azotobacter, Azospirillum	
	iii) Phosphate solubilizing , Potassium Mobilizing and micronutrient solubilizing bacteria.	
	d) Blue Green Algae as Biofertilizer: Introduction, `Mechanism of Nitrogen fixation, Heterocytes, Symbiotic Cyanobacteria: Anabaena and Azolla, BGA as biofertilizer and future prospects of BGA.	
	e) Mycorrhizal Biofertilizers: Introduction, Benefits , and future prospects.	
2.	Microbial Control of Soil Borne Plant Pathogens and Insect pests	50%
	a) Biological control: Methods and agents.	
	b) Microbial insecticides:	
	(i) Introduction, General features, advantages and disadvantages of microbial insecticides	
	(ii) Fungi as bioinsecticide: characters, mode of action and use of: <i>Beauveria bassiana, Verticillium lecanii</i> and <i>Nematophagous</i> fungi.	

iii) Bacteria as Bioinsecticides: *Bacillus thuringiensis* (Bt): mass production and field application

iv) Viruses as insecticides: Baculovirus, Entomopoxvirus, Cypovirus and Iridovirus.

Teaching- Learning	The teaching- learning process will consist of lectures (large group) in which the teacher will use aids such as chalk as well as make power
Methodology	point presentation to introduce the topics encompassing the basic concepts of the subject. Video lectures of NPTEL and BISAG.

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	25%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	25%
3.	University Examination	50%

Course Outcomes: Having completed this course, the learner will be able to	
1.	Are able to describe different types of microbes used as biofertilizers
2.	Know the applications of various microbes as insecticides and in plant disease control.
3.	Understand the importance of biofertilizers and microbial insecticides in sustainable agriculture

Suggested References:	
1.	Biofertilizers and biocontrol agents for organic farming, by Dr. Reeta Kholsa, KoJo Press, 2017
2.	Biofertilizers and Biopesticides, by Krishnendu Acharya, Surjit Sen, Manjula Rai, Techno World publication, 2 nd Edition, 2024
On-line resources to be used if available as reference material, lectures and notes of NPTEL.	

