

Course Code	US05MABIC01	Title of the Course	Molecular Biology
Total Credits of the Course	04	Hours per Week	04

Course	Student should be able to:
Objectives:	 Understand the concepts of Molecular Biology and Genetics Understand the concepts of Gene, Chromosome, Chromatin and Genome
	i , ,
	3. Understand Salient features of viral genome, Prokaryotic genome, Eukaryotic
	genome.
	4. Understand the information of replication, transcription, Translation
	5. Understand the Importance of Reverse transcription.
	6. Understand the Importance of Inhibition of protein synthesis

Course Content				
Unit	Description	Weightage* (%)		
1.	 Basic Concept of Molecular Biology 1. Introduction of Molecular Biology and Genetics 2. Definition of Gene, Chromosome, Chromatin and Genome 3. Concept of Gene 4. Concept of Chromosome and Chromatin 5. Numerical Changes in chromosome Aneuploidy (monosomy , nullisomy, trisomy, tetrasomy) Euploidy (monoploidy, DIploidy, Polyploidy) 6. Salient features of Viral genome, 7. Salient features of Prokaryotic genome 8. Salient features of Eukaryotic genome. 	25%		

2.	 DNA Replication Introduction of Replication Definition of Replication ,Replisome and Primosome Set of fundamental rules for DNA replication DNA replication is semi conservative Replication begins at an origin and usually proceeds bidirectionally DNA synthesis proceeds in 5' to 3' direction and is semi discontinuous Prokaryotic DNA polymerases: Activities of DNA polymerase I, II and III. Mechanism of replication: Initiation, Elongation Termination. 	25%
----	---	-----

3.	 Transcription RNA polymerases in Prokaryotic and Eukaryotic organisms Promoters in Prokaryotic and Eukaryotic organism Mechanism of transcription: Initiation Elongation Termination. Post transcriptional modification Splicing mechanism of group 1,2,3,4 Generation of 5' cap in m RNA yoly a tail formation in mRNA Reverse transcriptase and Reverse transcription 	25%
4.	 Translation / protein synthesis 1) Genetic code: Definition and properties of genetic code 2) Role of ribosomes, m RNA and t RNA in Translation 3) Mechanism of Translation A. formation of fmet tRNA fmet B. Activation of amino acid C. Initiation D. Elongation E. Termination 4) Post translational modification 5) Inhibition of protein synthesis by antibiotics and toxins. 	25%

Teaching- Learning Methodology	Direct Teaching through Chalk-Walk and Talk ICT enabled teaching Question-Answer Class discussion led by teacher/students Case Studies Literature review Problem solving activities Debate
	•
	Case Studies
	Literature review
	Problem solving activities
	Debate
	Collaborative and Co-operative Learning
	Think Pair Share
	Jigsaw
	Inquiry Based Learning
	Panel Discussion
	Project Based Learning
	Flipped Classroom
	Blended Learning designs
	Concept Mapping

B.Sc. Biochemistry Sem. 5

	Evaluation Pattern			
Sr. No.	Details of the Evaluation	Weightage		
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%		
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%		
3.	University Examination	70%		

Course Outcomes: On the successful completion of the course, the students will be able to
understand1.Understand the concepts of Molecular Biology and Genetics2.Recognize vocabulary used in biochemistry especially in relation to proteins, DNA,
enzymes, etc.3.Applying vocabulary and basic concepts to solving more advance problems in biochemistry.4.Understand that the correct concepts of gene and genome are essential for normal
functioning of the body.

Suggested References:		
Sr. No.	References	
1.	Watson, J. D., Baker T.A., Bell, S. P., Gann, A., Levine, M., and Losick, R., 2008 Molecular Biology of the Gene	
2.	Freifelder's Essentials of Molecular Biology by George M. Malacinski	
3.	Nelson and Cox, Lehninger's Principles of Biochemistry (2000), Worth Publish., Inc. NewYork.	
4.	Genetics P.K.GUPTA	

B.Sc. Biochemistry Sem. 5

On-line resources to be used if available as reference material

On-line Resources:

https://onlinecourses.nptel.ac.in/noc22_cy06/preview

https://onlinecourses.nptel.ac.in/noc21_bt19/preview

https://vlab.amrita.edu/?sub=3&brch=63

https://vlab.amrita.edu/?sub=3&brch=64

https://biotech01.vlabs.ac.in/

https://www.nature.com/subjects/biochemistry

https://sbcihq.in/

https://iubmb.org/resources/biochemistry-education-movies/

https://www.chem.fsu.edu/chemlab/bch4053l/resources.html

https://onlinecourses.nptel.ac.in/noc22_cy06/preview

https://onlinecourses.nptel.ac.in/noc21_bt19/preview

https://sbcihq.in/

https://iubmb.org/resources/biochemistry-education-movies/

https://vlab.amrita.edu/?sub=3&brch=63

https://vlab.amrita.edu/?sub=3&brch=64

Course	e Code	US05MABIC02	Title of the Course	Human Metabolis	m-I
	Credits Course	04	Hours per Week	04	
Course Objective	es:	carbohydrates a2. To recall the ke3. To explain how4. To learn mole metabolism	nd lipids y regulatory poin diet and hormon ecular mechanis	c and anabolic pathways in ts in metabolic pathways al signalling regulate metaboli- ms underlying major inheri s in clinical case presentation	c pathways ited diseases o
			Course Con	tent	
Unit	Descrip	tion			Weightage* (%)
1.	• H • I • () • () • H • H	Conversion of pyruva Gluconeogenesis and Hexose monophospha	lism, Catabolism tion of carbohydr s of glycolysis, R te to lactate, feed its regulation ate shunt and sigr cs of Krebs cycle	ate (In brief) egulation of glycolysis, er pathways for glycolysis ificance a, Regulation of Krebs cycle	25%
2.	DISOR • H • (0) • (0) • (0) • (0) • (1) • (1)		of Carbohydrate 1 : Role of glycog 2 with regulation eases (Type 0, Ty a, Fructosuria	metabolism (role of Insulin & en, Glycogenesis & pe I – VII)	25%
3.	Fatty ac • I • A • (• I	METABOLISM cid oxidation Digestion, absorption Alpha, beta and omeg Dxidation Unsaturate Degradation of phosp Dxidation of Ketone I	a Oxidation of S d, and Odd carbo holipids and glyc	aturated Fatty acid n chain of fatty acids	25%

	• Metabolism of lipoproteins; Structure, Types, Chemistry and importance	
4.	 LIPID METABOLISM AND ASSOCIATED DISORDERS Fatty acid biosynthesis Biosynthesis of Fatty acids, TG, Cholesterol(Brief) Synthesis of Ketone bodies Synthesis of glycolipids and phospholipids Hormonal regulation of lipid metabolism Diseases associated with lipid metabolism(In Brief); Hypercholesterolemia, Atherosclerosis and Fatty Liver 	25%

Teaching-	This course will be taught by a mixture of discussion, lecture, readings, smart
Learning	-board technology, on-line quizzes and student presentation modalities.
Methodology	

Evalu	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

Cou	Course Outcomes: Having completed this course, the learner will be able to		
1.	The focus is on the regulation of sugar and fat metabolism in eukaryotes, with an emphasis on mammals. The course will begin with a review of carbohydrate and lipid metabolic pathways, particularly pathway integration and regulation.		
2.	The physiology of the carbohydrate Digestion in mammals		
3.	Illustrate the metabolism of carbohydrates through various anabolic and catabolic pathways like glycolysis, Kreb's cycle, Glycogen metabolism, glucuronic acid cycle and others.		
4.	Development of understanding about the disorders due to enzyme which works in metabolism process.		

B.Sc. Biochemistry Sem. 5

Suggested References:			
Sr. No.	References		
1.	Lehninger Principles of Biochemistry by David L. Nelson, Michael Cox Publisher:WH Freeman		
2.	Biochemistryby Donald Voet, Judith G. Voet Publisher: Wiley		
3.	Textbook of biochemistry by Rafi MD Publisher: Universities Press (India) Pvt. Ltd.		
4.	Biochemistry – By U Satyanarayanaand U Chakrapani Publishers: Elsevier		
5.	Biochemistry by Jeremy M. Berg (Editor), John L. Tymoczko (Editor), LubertStryer (Editor)		

On-line resources to be used if available as reference material
On-line Resources
NPTEL
SWAYAM

Course Code	US05MABIC03	Title of the Course	Biochemistry Practical
Total Credits Of the Course	4	Hours per Week	8

Course Objectives:	 Student should be able to: 1. To learn basic operations and applications of common lab instruments 2. To understand the fundamentals of instrumentation techniques such as Colorimeter/UV- visible Spectrophotometer, electrophoresis and chromatography.
	3. To develop understanding of DNA isolation from different sources
	4. To estimate compounds like proteins and carbohydrate
	5. To learn the chromatographic technique for isolation of various
	compounds.
	6. To learn different techniques for precipitation of proteins.

Unit	Description		
	Section-I		
1.	To study the principle, working and applications of lab instruments Weighing Balance pH meter BOD incubator Centrifuge Homogenizer 		
2.	Isolation of chromosomal DNA from bacterial cells.		
3.	Agarose gel electrophoresis of genomic DNA		
4.	Analysis of Normal urine using strip and biochemical tests		
5.	Analysis of abnormal urine		
6.	Estimation of reducing sugar by DNS method		
7.	Estimation of creatine		
8.	Estimation of total carbohydrates by anthrone method		

	Section-II		
1.	To study principle, instrumentation, working and applications of chromatography.		
2. Separation of plant pigments using chromatography			
3.	Separation of amino acids by TLC		
4.	Immobilization of enzymes		
5.	Intracellular total protein precipitation by TCA/ Acetone method		
6. To study principle, instrumentation, working and applications of ele7. Determination of A/G ratio			
		8.	Effect of enzyme concentration on arginase enzyme.

Teaching- Learning Methodology	Topics will be taught and discussed in interactive sessions using conventional black board and chalk as well as ICT tools such as power point presentations and videos. Practical sessions will be conducted in a suitablyequippedlaboratoryeitherindividuallyoringroupsdependingon the nature of exercise as well as availability of infrastructure. Practical materials will be provided from primary and secondary sources of information.
--------------------------------------	---

Evaluation Pattern			
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written/Practical Examination (AsperCBCSR.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

B.Sc. Biochemistry Sem. 5

Co	Course Outcomes: Having completed this course, the learner will be able to		
1.	Students will be able to demonstrate an understanding of fundamental biochemical principles.		
2.	They will gain the hands on knowledge of various techniques useful in biochemistry which can help them to stand with a skilful job at various industries and research labs		

Sugge	Suggested References:			
Sr. No.	References			
1.	Standard methods of biochemical analysis–S.R.Thimmaiah			
2.	Practical clinical biochemistry methods & interpretations-RanjanaChawla			
3.	Practical biochemistry by Harold Varley.			

Course Code	US05MIBIC01	Title of the Course	Enzymology
Total Credits of the Course2Hours per Week2		2	
Course Objectives:	 The students will gain the knowledge of various theories of enzyme kinetics, the mechanisms of enzyme catalysis, and the mechanisms of enzyme regulation in the cell. To get the knowledge of different techniques used for isolation and purification of enzyme. 		

	Course Content				
Unit	Description	Weightage* (%)			
1.	 Enzyme kinetics & Inhibition Introduction of Kinetics Michaelis - Menten Equation & plot Lineweaver – Burk(L-B)Equation & plot Significance of Km and Vmax Factors affecting enzyme activity: Effect of enzyme concentration Effect of Substrate concentration Effect of pH Effect of product concentration Effect of light & radiation Allosteric enzymes Enzyme Inhibitions a) competitive inhibition b) non-competitive inhibition B) Irreversible inhibition Suicide Inhibition Non-sequential mechanism 	25%			

2.	 Isolation and purification of enzymes 1) Introduction, objectives & Strategy of enzyme Purification. 2) In brief methods that based on size / mass (Principle/Application) a) Centrifugation b) Gel filtration c) Ultra filtration & dialysis 3) Methods based on polarity a) Electrophoresis b) Ion exchange chromatography 4) Methods that based on change in solubility a) Change in pH b) Change in ionic strength c) Decrease in dielectric constant 5) Methods based on the possession of specific binding sites or structural features a) Affinity Chromatography 	25%
----	--	-----

Teaching-Learning	Direct Teaching through Chalk-Walk and Talk
Methodology	ICT enabled teaching
Methodology	Question-Answer
	Class discussion led by teacher/students
	Case Studies
	Literature review
	Problem solving activities
	Debate
	Collaborative and Co-operative Learning
	Think Pair Share
	Jigsaw
	Inquiry Based Learning
	Panel Discussion
	Project Based Learning
	Flipped Classroom
	Blended Learning designs
	Concept Mapping
	Concept Mapping

	Evaluation Pattern	
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

B.Sc. Biochemistry Sem. 5

Course Outcomes: On the successful completion of the course, the students will be able to understand

The students will gain the knowledge of various theories of enzyme kinetics, the mechanisms of enzyme catalysis, and the mechanisms of enzyme regulation in the cell.

They get knowledge of different techniques used for isolation and purification of enzyme.

Suggested References:	
Sr. No.	References
1.	Biochemistry – By U Satyanarayana and U Chakrapani Publishers: Elsevier
2.	Principles of Anatomy and Physiology- By Gerard J. Tortora, Bryan H. Derrickson Publishers: John Wiley & Sons, Inc.
3.	C. C. Chatterjee's Human Physiology

On-line resources to be used if available as reference material
On-line Resources:
https://onlinecourses.nptel.ac.in/noc22_cy06/preview
https://onlinecourses.nptel.ac.in/noc21_bt19/preview
https://vlab.amrita.edu/?sub=3&brch=63
https://vlab.amrita.edu/?sub=3&brch=64
https://biotech01.vlabs.ac.in/
https://www.nature.com/subjects/biochemistry

https://sbcihq.in/
https://iubmb.org/resources/biochemistry-education-movies/
https://www.chem.fsu.edu/chemlab/bch4053l/resources.html
https://onlinecourses.nptel.ac.in/noc22_cy06/preview
https://onlinecourses.nptel.ac.in/noc21_bt19/preview_
https://sbcihq.in/
https://iubmb.org/resources/biochemistry-education-movies/
https://vlab.amrita.edu/?sub=3&brch=63
https://vlab.amrita.edu/?sub=3&brch=64

Course Code	US05MIBIC02	Title of the Course	Biochemistry Practical
Total Credits of the Course	02	Hours per Week	04

	1. To learn the effect of different parameters on enzyme activity.
Objectives.	2. To understand the principle and use of equipment such as centrifugation and
	colorimeter/UV Visible spectroscopy.
	3. To get aware of Western Blotting
	4. To have understanding of basic chromatography technique.

Sr No	Name of the Practical	
1.	To study principle, instrumentation, working, types and applications of centrifugation.	
2.	Effect of the Enzyme (Invertase) Concentration on enzyme activity	
3.	Effect of Substrate Concentration on enzyme activity	
4.	Effect of time on enzyme activity	
5.	Effect of pH on enzyme activity	
6.	Isolation of lipids from egg yolk and separation by TLC	
7.	Demonstration of Western Blotting	
8.	To study principle, instrumentation, working and applications of Colorimeter/UV- visible Spectrophotometer.	

Teaching-Learning Methodology	Direct Teaching through Chalk-Walk and Talk ICT enabled teaching Question-Answer Class discussion led by teacher/students Case Studies Literature review
----------------------------------	---

B.Sc. Biochemistry Sem. 5

Debate Collaborative and Co-operative Learning Think Pair Share Jigsaw Inquiry Based Learning Panel Discussion Project Based Learning Flipped Classroom Blended Learning designs Concept Mapping		Think Pair Share Jigsaw Inquiry Based Learning Panel Discussion Project Based Learning Flipped Classroom Blended Learning designs
---	--	---

Course Outcomes: On the successful completion of the course, the students will be able to understand

Students will gain a good understanding of sophisticated instruments like centrifuge and TLC.

Students will develop the understanding of effect of different parameters on enzyme activity.

Suggested References:	
Sr. No.	References
1.	Standard Methods of Biochemical Analysis S.K. Thimmaiah Publishers: Kalyani
2.	Principles & Techniques of Practical Biochemistry – Wilson, Walker- Cambridge Univ. Press.
3.	An Introduction to Practical Biochemistry by David T. Plummer
4.	Textbook of Medical Laboratory Technology by Praful B. Godkar; Darshan P. Godkar

On-line resources to be used if available as reference material

On-line Resources:

B.Sc. Biochemistry Sem. 5

https://vlab.amrita.edu/?sub=3&brch=63

https://vlab.amrita.edu/?sub=3&brch=64

https://biotech01.vlabs.ac.in/

https://www.nature.com/subjects/biochemistry

https://sbcihq.in/

https://iubmb.org/resources/biochemistry-education-movies/

Course Code	US05MIBIC03	Title of the Course	Fundamentals of clinical Biochemistry
Total Credits of the Course	02	Hours per Week	02
Course	1. To get knowledge	e related to nervor	as system including structure of neuron and its

Course	1. To get knowledge related to hervous system merualing structure of hearon and his
Objectives:	classification based on its structure and function and signal transmission at synapse etc.
	2. To get familiar with basic structure of haemoglobin and various types of anaemia.

Course Content		
Unit	Description	Weightage*
1.	 NERVOUS SYSTEMS: Organization of the Nervous System (central & peripheral nervous system) Functions of the Nervous System. Basic Structure of neuron Structural and functional classification of neuron Neuroglia Myelination Ion Channels Signal transmission at synapse (electrical and chemical) Excitatory and Inhibitory Postsynaptic Potentials Structure of Neurotransmitter Receptors: <i>Ionotropic Receptors and Metabotropic Receptors</i> 	50%
2.	 HEMOGLOBIN AND ANAEMIA Hb: - Chemistry, Structure, Normal types of Hb. 1) Haemoglobinopathies Sickle – cell anemia- Molecular Bais of Hbs, Biochemical Basis of the diagnosis & management of Sickle cell Disease Thalassemia (brief) 2) Nutritional anaemia (Iron deficiency anaemia and folate deficiency anaemia) Blood coagulation factors and pathways 	50%
Feachir	ag-Learning Direct Teaching through Chalk-Walk and Talk	

B.Sc. Biochemistry Sem. 5

Methodology	ICT enabled teaching Question-Answer Class discussion led by teacher/students Case Studies Literature review Problem solving activities Debate Collaborative and Co-operative Learning Think Pair Share Jigsaw Inquiry Based Learning
	Collaborative and Co-operative Learning
	Think Pair Share
	6
	Panel Discussion
	Project Based Learning Flipped Classroom
	Blended Learning designs Concept Mapping

	Evaluation Pattern	
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

 Course Outcomes: On the successful completion of the course, the students will be able to understand
 By learning this course students will acquire knowledge of nervous system and its working.

 Students will expand their knowledge regarding hemoglobin structure as well as hemoglobinopathies.

B.Sc. Biochemistry Sem. 5

Suggested References:	
Sr. No.	References
4.	Biochemistry – By U Satyanarayana and U Chakrapani Publishers: Elsevier
5.	Principles of Anatomy and Physiology- By Gerard J. Tortora, Bryan H. Derrickson Publishers: John Wiley & Sons, Inc.
6.	C. C. Chatterjee's Human Physiology

On-line resources to be used if available as reference material

On-line Resources:

https://onlinecourses.nptel.ac.in/noc22_cy06/preview

https://onlinecourses.nptel.ac.in/noc21_bt19/preview

https://vlab.amrita.edu/?sub=3&brch=63

https://vlab.amrita.edu/?sub=3&brch=64

https://biotech01.vlabs.ac.in/

https://www.nature.com/subjects/biochemistry

https://sbcihq.in/

https://iubmb.org/resources/biochemistry-education-movies/

https://www.chem.fsu.edu/chemlab/bch4053l/resources.html

https://onlinecourses.nptel.ac.in/noc22_cy06/preview

B.Sc. Biochemistry Sem. 5

https://onlinecourses.nptel.ac.in/noc21_bt19/preview

https://sbcihq.in/

https://iubmb.org/resources/biochemistry-education-movies/

https://vlab.amrita.edu/?sub=3&brch=63

https://vlab.amrita.edu/?sub=3&brch=64

B.Sc. Biochemistry Sem. 5

Minor Biochemistry Practical

Course Code	US05MIBIC04	Title of the Course	Biochemistry Practical
Total Credits of the Course	02	Hours per Week	04

Objectives:	 To learn how to extract and estimate proteins. To understand the quantitative estimation of various parameters such as TG, Urea, creatinine and cholesterol. To understand the mechanism of adulteration.
	5. To understand the mechanism of additeration.

Sr No	Name of the Practical
1	Estimation of Creatinine by Jaffe method
2.	Extraction and estimation of protein from green gram by Lowry method
3.	Adulteration of milk
4.	Estimation of TG
5.	Estimation of Urea by DAMO Method
6.	Estimation of Cholesterol
7.	Checking of adulteration in food.

Teaching-Learning Methodology	Direct Teaching through Chalk-Walk and Talk ICT enabled teaching
	Question-Answer
	Class discussion led by teacher/students
	Case Studies
	Literature review
	Problem solving activities
	Debate

B.Sc. Biochemistry Sem. 5

Collaborative and Co-operative Learning Think Pair Share Jigsaw Inquiry Based Learning Panel Discussion Project Based Learning Flipped Classroom Blended Learning designs Concept Mapping
Concept Mapping

Course Outcomes: On the successful completion of the course, the students will be able to understand

By learning this course students will acquire knowledge of qualitative determination of proteins and various parameters.

Students will gain a good understanding of extraction method used to extract proteins.

Students will develop the fundamentals of adulteration.

B.Sc. Biochemistry Sem. 5

Suggested References:	
Sr. No.	References
1.	Standard Methods of Biochemical Analysis S.K. Thimmaiah Publishers: Kalyani
2.	An Introduction to Practical Biochemistry by David T. Plummer
3.	Textbook of Medical Laboratory Technology by Praful B. Godkar; Darshan P. Godkar

On-line resources to be used if available as reference material
On-line Resources:
https://vlab.amrita.edu/?sub=3&brch=63
https://vlab.amrita.edu/?sub=3&brch=64
https://biotech01.vlabs.ac.in/
https://www.nature.com/subjects/biochemistry
https://sbcihq.in/
https://iubmb.org/resources/biochemistry-education-movies/
https://www.chem.fsu.edu/chemlab/bch4053l/resources.html

Course Code Total Credits of The Course		US05SEBIC01	Title of the Course	Tools and Techniques in	Biochemistry-V
		lits of 02 Hours per 02		02	
Course1) Students' will gain a good understandi available in a biochemistry laboratory.			instruments		
		· · ·	course students wil and Spectrophotor	l acquire knowledge of Electro neter	ophoresis,
			Course Conte	ent	
Unit			Description		Weightage* (%)
1.Electrophoresis and Chromatography General Principle, method and applications for following methods					
		owing methods			
	a) Cellulose Acetate electrophoresis				
	b) Ge	el electrophoresis.			50%
	c) Th	in layer electrophores	is		
	d) Im	muno electrophoresis			
	Chromat	-			
		tion on the bases of ph			
		on chromatography –			
	a) b)	Adsorption chromate Ion Exchange chrom			
	c)	Molecular sieve chro			
	d)	Gas Liquid chromato			
	e)	High Performance Li	quid Chromatogra	phy.	
2.	Spectroph	otometer			
		pes of Spectroscopy			
		efinition for Transmitta			50%
		inciple, flow diagram, IR Spectroscopy	working& applicat	ions of	
		Visible Spectroscopy	,		
		NMR Spectroscopy			

Teaching-Learning Methodology	Direct Teaching through Chalk-Walk and Talk ICT enabled teaching Question-Answer Class discussion led by teacher/students Case Studies Literature review Problem solving activities Debate Collaborative and Co-operative Learning Think Pair Share Jigsaw Inquiry Based Learning Panel Discussion Project Based Learning Flipped Classroom Blended Learning designs Concept Mapping

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written/Practical Examination(AsperCBCSR.6.8.3)	25%
2.	InternalContinuousAssessmentintheformofPractical,Viva- voce,Quizzes,Seminars,Assignments,Attendance(AsperCBCS R.6.8.3)	25%
3.	University Examination	50%

	Cour	rse Outcomes: On the successful completion of the course, the students will be able to understand
		By learning is course students will acquire knowledge of Electrophoresis, Chromatography and Spectrophotometer
ſ		Students will gain a good understanding of common laboratory instruments available in a biochemistry laboratory.

Suggested References:		
Sr. No.	References	
1.	Principles and techniques of biochemistry & molecular biology. Wilson and Walker .Andreas Hofmann and Samuelclokie	
2.	Principles&TechniquesofPracticalBiochemistry–Wilson,Walker-Cambridge Univ. Press.	
3.	Biophysical chemistry- Principles and techniques- Upadhyay, Upadyay and Nath Himalaya Publication house Mumbai.	

On-linere sources to be used if available as reference material
On-line Resources:
https://onlinecourses.nptel.ac.in/noc22_cy06/preview
https://onlinecourses.nptel.ac.in/noc21_bt19/preview_
https://vlab.amrita.edu/?sub=3&brch=63
https://vlab.amrita.edu/?sub=3&brch=64
https://biotech01.vlabs.ac.in/
https://www.nature.com/subjects/biochemistry
https://sbcihq.in/
https://iubmb.org/resources/biochemistry-education-movies/
https://www.chem.fsu.edu/chemlab/bch4053l/resources.html

B.Sc. Biochemistry Sem. 5

Course Code	US05SEBIC01	Title of the Course	Biochemistry Practical
Total Credits of the Course	02	Hours per Week	04

Course	Student should be able to:
Objectives:	1. To develop understanding of DNA isolation from different sources
	2. To learn the chromatographic technique for isolation of various compounds.

Sr No	Name of the Practical
1	Separation of amino acids by TLC
2.	Separation of plant pigments by Chromatography
3.	Isolation of lipids from egg yolk and separation by TLC
4.	Isolation of DNA from bacteria
5.	Agarose gel electrophoresis for DNA
6.	Isolation of Plasmid DNA
7.	Demonstration of Southern Blotting

Teaching-	Direct Teaching through Chalk-Walk and Talk
Learning	ICT enabled teaching
Methodology	Question-Answer
	Class discussion led by teacher/students
	Case Studies
	Literature review
	Problem solving activities
	Debate
	Collaborative and Co-operative Learning
	Think Pair Share
	Jigsaw
	Inquiry Based Learning
	Panel Discussion
	Project Based Learning
	Flipped Classroom
	Blended Learning designs

	Concept Mapping	
Course Outcomes: On the successful completion of the course, the students will be able to understand		
To develop understanding of DNA isolation from different sources		
To learn the chromatographic technique for isolation of various compounds		

Suggested References:	
Sr. No.	References
1.	Standard Methods of Biochemical Analysis S.K. Thimmaiah Publishers: Kalyani
2.	An Introduction to Practical Biochemistry by David T. Plummer
3.	Textbook of Medical Laboratory Technology by Praful B. Godkar; Darshan P. Godkar

On-line resources to be used if available as reference material	
On-line Resources:	
https://vlab.amrita.edu/?sub=3&brch=63	
https://vlab.amrita.edu/?sub=3&brch=64	
https://biotech01.vlabs.ac.in/	
https://www.nature.com/subjects/biochemistry	
https://sbcihq.in/	
https://iubmb.org/resources/biochemistry-education-movies/	
