

PROGRAMME STRUCTURE Master of Science in Material Science MSc (Material Science) Semester: III

Programme Outcome (PO) - For MSc Material Science Programme	Materials Science is an interdisciplinary subject of great importance. The syllabi in this program cover various aspects of physics, chemistry and engineering relevant to different types of materials. As the rapid progress is being made in the development of sophisticated tailor made materials of desired properties and specifications to suit specific needs, this program will help the students to be technologically sound with the scientific knowledge of chemical and physical sciences.
Programme Specific Outcome (PSO) - For MSc Material Science	 This program will help the students > to strengthen their knowledge on the fundamental aspects of materials science > to acquire knowledge on the properties of different types of materials > to get acquainted with different experimental and technical methods used for the characterization of materials > the area of applications where different tailor made materials can be used.

To Pass	At least 40% Marks in the University Examination in each paper and 40% Marks in the aggregate of University and
	Internal examination in each course of Theory, Practical & 40% Marks in Viva-voce.

		Name Of Course		v Credit	Exam	Component of Marks		
Course Type	Course Code		Theory/		Duration	Internal	External	Total
Course Type		Name Of Course	Practical		in hrs	Total	Total	Total
	PS03CMTS51	Glass, Ceramic and Carbon Materials	Т	4	3	30	70	100
	PS03CMTS52	Fibers, Plastics and Elastomers	Т	4	3	30	70	100
Core Course	PS03CMTS53	Modern Characterization Techniques	Т	4	3	30	70	100
Cole Course	PS03CMTS54	Practicals I	Р	4	3	30	70	100
	PS03CMTS55	Practicals II	Р	4	3	30	70	100
	PS03CMTS56	Comprehensive Viva		1	-	-	50	50
Elective	PS03EMTS51	Composite Materials	Т	4	3	30	70	100
Course (Any One)	PS03EMTS52	Testing Methods For Films & Rubbers	Т	4	3	30	70	100

Master of Science – Materials Science

(M.Sc.) (Materials Science) Semester -III

Course Code	PS03CMTS51	Title of the Course	Glass, Ceramic and Carbon Materials
Total Credits of the Course	4	Hours per Week	4 hrs

Course	1. To enhance the knowledge on glass, ceramic and carbon materials
Objectives:	2. To get more information on industrial carbons and ceramic processings

Cours	Course Content			
Unit	Unit Description			
1.	Glass, Nature of glass, Supercooled liquid, Structure, Glass forming systems, Silicate systems, Non-silicate systems, Types of Glasses, Glass-ceramic, Processing of glass - annealing point, strain point, Properties of glass, Glass like coatings, Ceramic coatings, Glass in Industry and Engineering, Applications of glass	25		
2.	Ceramic materials, Various types/classification of ceramics, Basic properties of ceramics, Structure of silicates - Discrete anion, extended anion and three dimensional networks, Earth's crust and elements, Mica, Clays minerals, Whiteware ceramics, Rocks and minerals, Zeolite, Bioceramics - Bioinert, Bioactive and Bioresorbable ceramics	25		
3.	Processing of ceramics, Properties of ceramics-density, porosity, permeability, mechanical properties, thermal properties and optical properties, Applications of ceramics, Phase diagram, Refractories, fireclay, mullite, silica refractories, magnesite refractories, carbide & nitride refractories, pure oxide refractories, chrome and magnesite refractories	25		
4.	Introduction to carbon, Allotropes of carbon, Different crystalline and amorphous carbon, Processing of carbon and graphite materials, Disordered to ordered carbon, Properties of carbon materials, Activated carbon, Raw materials, Processing of raw materials, Pyrolysis, Physical activation, Chemical activation, Adsorption properties and application of porous carbon, Advanced carbons	25		

Teaching-	Group discussion/ Panel/Presentation
Learning	
Methodology	

Evalu	Evaluation Pattern				
Sr. No.					
1.	1. Internal Written / Practical Examination (As per CBCS R.6.8.3)				
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%			
3.	3. University Examination				

Cou	Course Outcomes: Having completed this course, the learner will be able to				
1.	1. Get fundamental knowledge on modern concepts and terminology of related topics.				
2.	Come to know about career opportunities at R & D centers/organizations and glass, ceramic and carbon based industrial firms.				
3.	Learn raw materials processing of different ceramics.				

Sugges	Suggested References:		
Sr. No.	References		
1.	Science of Engineering Materials by Manas Chanda		
2.	Ceramic Science for Materials Technologists by I. J. McColm		
3.	An Introduction to Carbon Science by Harry Marsh		
4.	Industrial Ceramic by F. Singer, S. Singer		
5.	Carbon Science by C.L. Mantel		

On-line Resources

https://ceramics.org/about/what-are-engineered-ceramics-and-glass

https://nptel.ac.in/courses/113/105/113105015/

https://www.cgcri.res.in/students/

Master of Science – Materials Science

(M.Sc.) (Materials Science) Semester -III

Course Code	PS03CMTS52	Title of the Course	Fibers, Plastics and Elastomers
Total Credits of the Course	4	Hours per Week	4 hrs
Course Objectives:	selected thermopla 2. Processing tec processing of above	astics, thermoset hniques and pr ve polymers	rization, properties and applications of s, elastomers and fiber forming polymers ocessing perameters associated with the ification of plastic and rubbers

Course Content					
Unit	Description				
1.	1. Synthesis, properties and application of selected thermoplastic and thermosetting resins such as polyolefins, vinyl resins, polystyrene, High impact polystyrene, unsaturated polyesters, epoxy, phenolic, amino,silicon and polyurethane resins. Additives for plastics. Processing technologies like, compression moulding, transfer moulding, extrusion, injection molding, thermoforming, vaccum forming, blow molding, calendering, rotational molding, film casting, centrifugal casting process, coating processes, machining of plastic, selected plastic mechinary designs theory and quality control.				
2.	Elastomeric materials, natural rubber, selected synthetic rubbers, thermoplastic elastomer, hypalon and reclaimed rubber. Processing technologies of rubbers, additives for elastomers, rubber compounding and processing technology, sulfur vulcanisation, theory of sulfur vulcanization & accelerator action, non-sulphur vulcanization, accessment of processability& state of cure, hard rubber, latex technology, some major rubber products		25%		
3.	Commercial fiber forming polymers like poly (ethylene terephthalate), Nylon 6, 11, 12, 66, 610, 612, acrylics, polyacrylonitril, polyethylene, polypropylene, elastomeric fibers, polyvinyl chloride, and aramid fiber.		25%		
4.	4. Fiber spinning techniques, melt spinning, wet and dry spinning, wet-jet dry spinning process, spin finishes, and basic post spinning operations, identification, testing and evaluation of polymers and fibers, recycling of plastics.		25%		
Teaching- Learning Methodology		Group discussion/ Panel/Presentation			

Evalu	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

	Course Outcomes: Having completed this course, the learner will be able to		
1. get a broad view of different types of plastics, elastomers and synth		get a broad view of different types of plastics, elastomers and synthetic fibers	
2. knowledge of their properties and processing behaviours		knowledge of their properties and processing behaviours	
	3.	Identification methods used for above materials. Knowledge of all these will be helpful to get employment in any type of plastic industries.	

Suggested References:		
Sr. No.	References	
1.	Ghosh, P.(3 rd Ed.) (2010). <i>Polymer Science and Technology</i> . McGraw-Hill Education LLC.	
2.	Vaidya, A. A. (1988). Production of Synthetic Fibres. India: Prentice-Hall of India Private Limited.	
3.	Franta, I. (Ed.). (2012). Elastomers and rubber compounding materials (Vol. 1). Elsevier.	
4.	Strong, A. B. (2006). <i>Plastics: Materials and Processing</i> . United Kingdom: Pearson Prentice Hall.	
5.	Brydson, J. A. (6 th Ed.) (2013). <i>Plastics Materials</i> . United Kingdom: Elsevier Science.	

On-line Resources

Processing of Polymers and Polymer Composites, Dr. Inderdeep Singh, mechanical Engineering, IIT Roorkee https://nptel.ac.in/courses/112/107/112107221/

Master of Science – Materials Science

(M.Sc.) (Materials Science) Semester -III

Total Credits of the Course4Hours per Week4 hrs	Course Code	PS03CMTS53	Title of the Course	Modern Characterization Techniques
		4	1	4 hrs

Course	1.To learn theories and applications of different techniques used for	
Objectives:	characterization of materials	

Cours	Course Content			
Unit	t Description			
1.	Introduction, electromagnetic radiation, generation of X-rays, continuous X-ray spectrum, characteristic X-ray spectrums, absorption. Phase relationship, diffraction, derivation of diffraction condition, diffraction methods, Laue, powder and rotating crystal method, X-ray diffractometer and spectrometer, grain size estimation and texture.	25%		
2.	X-ray fluorescence, chemical analysis using X-ray spectrometry, general principle, wavelength dispersive and energy dispersive spectrometers.	25%		
3.	Introduction, classification of structure based on level of study. The basic and advanced optical microscope, illumination variations, characteristics of optical microscope and its applications.	25%		
4.	Introduction, electron optical instruments, Analytical Transmission Electron Microscopy, Transmission Electron Microscopy, electron optics, electron beam specimen interaction, signal detectors. Contrast mechanisms. Introduction to SEM general uses, samples, example of applications, limitations. Atomic Force Microscopy.	25%		

Teaching-	Group discussion/ Panel/Presentation
Learning	
Methodology	

Evalu	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

C	Course Outcomes: Having completed this course, the learnerwill be able to		
1.	Understand different theories behind materials characterization		
2.	Operate different basic tools, instruments(X-ray based) used for structural analysis		
3.	Differentiate between different materials characterization techniques to be used for purpose inhand		

Sugges	Suggested References:	
Sr. No.	References	
1.	Elements of X-ray diffraction – B.D. Cullity.	
2.	Materials Characterization – Ruth E. Whan, Volume 10, ASM Handbook	
3.	Characterization of Materials, Vol.2– Elton N.Kaufmann	

On-line Resources

Techniques of Material Characterization, Prof. Shibayan Roy, IIT Kharagpur https://nptel.ac.in/courses/113/105/113105101/

Master of Science – Materials Science

(M.Sc.) (Materials Science) Semester -III

Course Code	PS03CMTS54	Title of the Course	Practical-I
Total Credits of the Course	4	Hours per Week	12

Course	1. To enhance knowledge in materials synthesis and characterization
Objectives:	2. To study the properties of materials
	3. To analyze the various types of materials by analytical techniques

Course Content		
Unit	Description	Weightage* (%)
1.	Chemical Analysis of Alloys	
	Volumetric	
	Gravimetric	
	Conductometry	
	Analysis Cell constant	
	Analysis for strong acid & strong base	
	Analysis for weak acid & strong base	
	Analysis for Mixture of acids	
	Solubility of sparingly soluble salts by pHmetry	100%
	Analysis of strong acid & strong base	
	Analysis for weak acid & strong base	
	Analysis for Mixture of acids	
	Spectrophotometric	
	Strength of unknown solution	
	Refractrometry	
	Refractive Index & Molar reflectivity	

Viscometry	
Relative viscosity	
Mol. Weight of Polymers	
Corrosion	
Zinc and Al in acid & base	
Anodization of Aluminium and its corrosion studies	
Flame photometry	
Estimation of Na^+ ion Estimation of K^+ ion	
Gas chromatography	
Particle size distribution	
Specific Gravity of powder sample	
Porosity of ceramics and carbon	
Langmuir Adsorption Isotherm	
Studies on carbon - Ash content	
Carbon content	
Calorific value by Bomb calorimeter	
Preparation of silica particles by Sol-gel method	

Teaching- Learning Methodology	Demonstration/Group discussion/ Panel/Hands on training
--------------------------------------	---

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Course Outcomes: Having completed this course, the learner will be able to	
1.	Learn experimental study on materials synthesis and characterization
2.	Hands-on practical demonstration and instrumental techniques
3.	Get knowledge on analysis of different materials

Suggested References:	
Sr. No.	References
1.	Materials Science and Engineering: An Introduction by William D. Callister
2.	The Science and Engineering of Materials by Donald R. Askeland
3.	Science of Engineering Materials by Manas Chanda
4.	Handbook of Ceramics by S. Kumar
5.	Polymer Science by V R.Gowariker

On-line Resources

https://worldwidescience.org/topicpages/f/flame+photometric+determination.html

https://www.geoengineer.org/education/laboratory-testing/measurement-of-specific-gravity-of-soils

 $http://www.nitjsr.ac.in/course_assignment/MME09MT\%201403\%20PEMParticle\%20size\%20distribution.pdf$

Master of Science – Materials Science

(M.Sc.)(Materials Science) Semester -III

Course Code	PS03CMTS55	Title of the Course	PRACTICAL – II
Total Credits	4	Hours per	12 hrs
of the Course		Week	
Course Objectives:	rse 1. Laboratory method used for casting of polymeric films and fabrication o		

Course Content		
Unit	Description	Weightage* (%)
1.	 Determination of gel-time and peak exotherm temperature of polymer Preparation of polymeric film by casting process with & without microfillers and nanofillers Fabrication of Chopped fiber reinforced composite by compression moulding Fabrication of glass fiber/ natural fiber reinforced Composites by hand lay-up technique Fabrication of particulate composites Polymer coating on metal panel and wood Fiber content and Porosity measurement of composites Mechanical Properties of Material such as Tensile strength, Compressive strength, Impact strength, Hardness Thermal Properties of Material - Thermal Gravimetric Analysis, Differential Scanning Calorimetry, Thermo mechanical Analysis Polishing of sample Optical Properties Microstructure Non Destructive Testing Note - Experiments can be added or deleted depending upon current 	100%

advancements.

Teaching- Learning Methodology	Demonstration/Group discussion/ Panel/Hands on training	

Evalı	Evaluation Pattern	
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cou	Course Outcomes: Having completed this course, the learner will be able to	
1.	Prepare films and composites by different fabrication methods	
2.	Get idea of different types of mechanical testing	

Suggested References:	
Sr. No.	References
1.	Composites Materials by K. K. Chawla

On-line resources to be used if available as reference material

On-line Resources

Introduction To Composites, Prof. Nachiketa Tiwari, Mechanical Engineering, IIT Kanpur. https://nptel.ac.in/courses/112/104/112104229/

Master of Science – Materials Science

(M.Sc.) (Materials Science) Semester -III

Course Code	PS03CMTS56	Title of the Course	Comprehensive Viva
Total Credits of the Course	1	Hours per Week	1 hr

Course Objectives:	1.

Course Content		
Unit	Description	Weightage* (%)
1.	Students have to appear for viva voce examination	100%

Teaching-	
Learning	
Methodology	

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Course Outcomes: Having completed this course, the learner will be able to	
1.	
2.	

Sugge	Suggested References:	
Sr. No.	References	
1.		
2.		
3.		
4.		

On-line resources to be used if available as reference material

On-line Resources

Master of Science – Materials Science

(M.Sc.)(Materials Science) Semester -III

Course Code	PS03EMTS51	Title of the Course	Composite Materials
Total Credits of the Course	4	Hours per Week	4 hrs
Course Objectives:	 Requirement of the composite Technical me fabrication of com 	f the selection o thods used for pposite	ts related to composite materials of the raw materials for the preparation of the preparation of reinforcement and and mechanical test methods used for

Course	Course Content		
Unit	Description	Weightage* (%)	
1.	Types of composite materials – Particulate composites, Dispersion strengthened composites, laminar composites and introduction to fiber reinforced composites. Fiber reinforced composites with different matrix systems, polymer matrix (thermoset and thermoplastic) matrix composites, metal matrix composites and ceramic matrix composites, Structural composites, sandwich structure, cladding, Hybrid composites systems	25%	
2.	Types of reinforcements – Whiskers, natural fibers and synthetic fibers, preparation, structure and properties of different reinforcing fibers, carbon fibers, glass fibers, polymer fibers, alumina fibers and non oxidesfibers.	25%	
3.	Objectives of composite manufactures, Interfaces in composites, molding processes for reinforced composites – contact molding, prepreg methods, vacuum bag molding, pressure bag molding, vacuum impregnation and injection molding, transfer molding, reaction transfer molding, pultrusion, filament winding, Fabrication of Metal and Ceramic matrix composites, recycling of PMC and applications.	25%	
4.	Test procedures for mechanical testing and properties, void content and fiber volume content for fiber reinforced composites. Mechanical Properties of composite, Effect of fiber volume content, orientation of fibers & void contents on mechanical properties of composite, Impact test, fetigue test, creep test and hardness test, Thermal properties of composites. Applications of composites in different field, specific durability issues, NDT & evaluation.	25%	

Teaching-	Group discussion/ Panel/Presentation
Learning	
Methodology	

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Course Outcomes: Having completed this course, the learner will be able to

1.	learn about the inter disciplinary links between engineering principles and applied science to material behaviours.
2.	Both scientific and technological knowledge of different types of composite materials
3.	Testing methods used for the determination of physical and mechanical properties. Students will get expertise in the field of composites which will help them to get job in industries.

Sugges	Suggested References:					
Sr. No.	References					
1.	Science and Engineering of Materials D. R. Askeland					
2.	Science of engineering materials – Manas Chandra					
3.	Hand Book of composites – G. Lubin					
4.	Composites Materials by K. K. Chawla					
5.	An introduction to composites materials – D. Hull					
6.	Comprehensive composite materials II - Carl H. Zweben & Peter W. R. Beaumont					

On-line resources to be used if available as reference material

On-line Resources

Introduction To Composites, Prof. Nachiketa Tiwari, Mechanical Engineering, IIT Kanpur. https://nptel.ac.in/courses/112/104/112104229/

Master of Science – Materials Science

(M.Sc.) (Materials Science) Semester -III

Course Code	PS03EMTS52	Title of the Course	Testing Methods For Films & Rubbers		
Total Credits of the Course	4	Hours per Week	4 hrs		
Course Objectives:	behaviour of elaste 2. Different types	ng methods used for plastics and elastomers, valcanization astomeric materials es of physical & mechanical testing method rn involved in coatings, Physical and mechanical testing of			

Course	Course Content					
Unit	Description	Weightage* (%)				
1.	Plasticity, rotating disk viscometer, plasticity tests and test methods, parallel plate plastometer, extrusion and mixing tests, scorch, vulcanization, vulcanization test, chemical methods, physical test methods, continuous measurement of vulcanization, uses of curemeter, effect of temperature on vulcanization rate.	25%				
2.	Stress-strain test, tensile tests, hardness, dynamic mechanical tests, free vibration tests, heat Build-up tests, crack tests, time-dependent properties, tear tests, friction test, adhesion properties measurement.	25%				
3.	Durability of coatings, adhesion, mechanical methods, tape method, scratch method, abrasion method, deceleration method, engineering methods for measuring adhesion. Basic concepts, nucleation rate measurements, island density measurement, critical condensation measurement, comparison between mechanical and nucleation methods, nature of adhesion forces, physisorption, chemisorption.	25%				
4.	Stress measuring techniques, disk method, bending beam method, X-ray and electron diffraction techniques, other techniques.	25%				

Teaching- Learning	Group discussion/ Panel/Presentation
Methodology	

Evalu	Evaluation Pattern					
Sr. No.	Details of the Evaluation	Weightage				
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%				
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%				
3.	University Examination	70%				

Course Outcomes: Having completed this course, the learner will be able to
1. Student will get thorough knowledge on the testing processes used for plastics and rubbers.
2. knowledge of their properties and processing behaviours
3. Identification methods used for above materials. Knowledge of all these will be helpful in industries.

Sugges	Suggested References:					
Sr. No.	References					
1.	Hand Book of Polymer Testing byRoger Brown.					
2.	Rubber Technology by M. Morton.					
3.	Handbook of Thin Films by Maissel and Glang					

On-line resources to be used if available as reference material
On-line Resources
Processing of Polymers and Polymer Composites, Dr. Inderdeep Singh, mechanical

Processing of Polymers and Polymer Composites, Dr. Inderdeep Singh, mechanical Engineering, IIT Roorkee https://nptel.ac.in/courses/112/107/112107221/

PROGRAMME STRUCTURE Master of Science in Material Science MSc (Material Science) Semester: IV

Programme Outcome (PO) - For MSc Material Science Programme	Materials Science is an interdisciplinary subject of great importance. The syllabi in this program cover various aspects of physics, chemistry and engineering relevant to different types of materials. As the rapid progress is being made in the development of sophisticated tailor made materials of desired properties and specifications to suit specific needs, this program will help the students to be technologically sound with the scientific knowledge of chemical and physical sciences.
Programme Specific Outcome (PSO) - For MSc Material Science	 This program will help the students > to strengthen their knowledge on the fundamental aspects of materials science > to acquire knowledge on the properties of different types of materials > to get acquainted with different experimental and technical methods used for the characterization of materials > the area of applications where different tailor made materials can be used.

To Pass	At least 40% Marks in the University Examination in each paper and 40% Marks in the aggregate of University and
	Internal examination in each course of Theory, Practical & 40% Marks in Viva-voce.

			The ever/	Credit	Exam	Component of Marks		
Course Type	Course Code	Name Of Course	Theory/ Practical		Duration	Internal	External	Total
					in hrs	Total	Total	Total
	PS04CMTS51	Engineering Polymers	Т	4	3	30	70	100
	PS04CMTS52	Selected Topics in Nanoscience and Nanotechnology	Т	4	3	30	70	100
Core Course	PS04CMTS53	Optical, Magnetic and Dielectric Properties of	Т	4	3	30	70	100
Cole Course		Materials						100
	PS04CMTS54	Project Work		8	12	30	70	100
	PS04CMTS55 Comprehensive Viva			1	-	-	50	50
Elective	PS04EMTS51	Materials and Environment	Т	4	3	30	70	100
Course	PS04EMTS52	Ceramic Technology	т	4	3	30	70	100
(Any One)	1504EW1552	Ceranne reenhology	I	4	5	50	70	100

Master of Science – Materials Science

(M.Sc.) (Materials Science) Semester -IV

Course Code	PS04CMTS51	Title of the Course	Engineering Polymers
Total Credits of the Course	4	Hours per Week	4 hrs

Course	1.Structure,	synthesis,	cł	naracteriza	tion, p	ropertie,	app	olication	and	
Objectives:	processing	parameters	of	polymer	blends,	engineer	ring	plastics,	ion	
	exchange re	sins, conduct	ing	polymers a	and bio-i	mplants				

Course	Course Content						
Unit	Unit Description						
1.	1. Introduction, types and methods for preparation, characterization and applications of polyblends, alloys and Inter penetrating polymer networks with PMR 15 and Thermid 600 based IPNs for advanced applications.						
2.	Adhesive bonding, theories of adhesion, requirements for a good bond, mechanism of bond failure, types of adhesives, surface preparation, primers and adhesion promotors, role of surfactants and other additives in adhesives, coatings, paints, commercial adhesives based on casein, starch, polyvinyl alcohol, rubber based adhesives, high temperature adhesives, hot melt adhesive, pressure sensitive adhesives.	25%					
3.	Structures, synthesis, properties and applications of selected engineering plastics such as, polyphenylene, poly (Phenylene oxide)s, poly (ether ketone)s, polyimides, polyamide-imide, poly(phenylenesulfide)s, polysulfones, poly ether-imides, Polycarbonates, Polybutylene terephthalates, polyacetals, polymeric adsorbents, polymer electrolyte membrane, selected heterocyclic polymers.	25%					
4.	Polymers for miscellaneous applications: Action of ion exchange resins, ion exchange chromatography, ion exchange in organic and aqueous organic solvents, chelating ion exchange resins, liquid ion exchange resins. Insulating polymers, semiconducting polymers, semiconducting and metallic conjugated polymers, other highly conductive polymers, method of preparation, applications of conducting polymer. Classes of biomedical materials, biocompatibility of biomedical materials, biocompatibility tests, selected polymer based bio-implants, recycling of polymers.	25%					

Teaching-	Group discussion/ Panel/Presentation
Learning	
Methodology	
	L

Evalu	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

Course Outcomes: Having completed this course, the learnerwill be able to

1. Get thorough knowledge of engineering polymeric materials used in advanced applications

Sugges	Suggested References:		
Sr. No.	References		
1.	Fundamentals of plastics and Elastomers by C. A. Happers		
2.	Plastic Materials by J. A. Brydson		
3.	Handbook of adhesive tech by Pizzi, A, Mittal K. A		
4.	Textbook of quantitative chemical analysis by A.I. Vogel		
5.	Electrochemistry of conducting polymers by J.Plocharski and S. Roth.		
6.	Biomaterials Science & Engineering by John Bupark.		
7.	Surfactants in polymers, coatings, inks and adhesives, vol 1 by david R. Karsa		
8.	Advances in polymeric science by Sinha Pandey Kumar Kumar		

On-line resources to be used if available as reference material

On-line Resources

Polymers: concepts, properties, uses and sustainability, Prof. Abhijit P Deshpande, IITM https://nptel.ac.in/courses/103/106/105106205/

Master of Science – Materials Science

(M.Sc.)(Materials Science) Semester -IV

Course Code	PS04CMTS52	Title of the Course	Selected Topics in Nanoscience and Nanotechnology
Total Credits of the Course	4	Hours per Week	4

Course	1. To make aware with Nano things of science and technology		
Objectives:	2. To correlate the bulk and nano level phenomena and properties		
	3. To get knowledge on new techniques for nanomaterials synthesis and characterization		

Course Content			
Unit	Description	Weightage*	
1.	Nanoscience, Nanotechnology, Nanomaterials, Nanostructure and bulk materials, Zero dimensional, one dimensional, two dimensional materials nanomaterials, Surface to volume ratio, Nanoparticles, Nanofibers, Thin films, Characterization techniques for nanomaterials Quantum confinement and materials	25	
2.	Top-down and bottom-up approach, Fabrication of Nanomaterials, Mechanical techniques, Thermal techniques, Techniques for nanostructured materials, Physical vapour deposition, Chemical vapour deposition, Lithography, Template method, Mechanical properties, Thermal properties, Surface properties and Optical properties of nanomaterials	25	
3.	Carbon nanomaterials, Third allotrope of carbon - fullerenes, Discovery of fullerene and carbon nanotubes, Preparation of carbon nanotubes, Structure carbon nanotubes, Various properties of carbon nanotubes, Important applications of carbon nanotubes, Graphene	25	
4.	Fabrication of nanocomposites, Microfillers and nanofillers, Nanofibers and their composites, Nanoclays-polymer nanocomposites, Preparation, characterization and industrial applications, Polymer nanocomposite coatings, Functionalization of CNTs, Carbon nanocomposites, Ceramic nanocomposites, Current topics	25	

Teaching- Learning Methodology	Group discussion/ Panel/Presentation
--------------------------------------	--------------------------------------

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Course Outcomes: Having completed this course, the learner will be able to
 Students will be benefited by enhancing knowledge on nanomaterials, which is strongly associated with emerging field in Materials Science.
 Students will have more scope to shape up their future at leading research centers and industries.
 Get new idea for recent concept in atomic level science.

Sugges	Suggested References:		
Sr. No.	References		
1.	Handbook of Nanophase Materials by Avery N. Goldstein		
2.	Nanotechnology by Gregory Timp		
3.	Nanostructured Materials by Carl C. Koch		
4.	Introduction to Nanotechnology by Chrles P. Poole & F. J. Owens		
5.	Polymer Nanocomposites Coatings by Vikas Mittal		
6.	Nanostructures & Nanomaterials: Synthesis, Properties and Applications by Guozhong Cao		

On-line resources to be used if available as reference material

On-line Resources

https://www.understandingnano.com/resources.html

https://nptel.ac.in/courses/113/106/113106093/

Master of Science – Materials Science

(M.Sc.)(Materials Science) Semester -IV

Course Code	PS04CMTS53	Title of the Course	Optical, Magnetic and Dielectric Properties of Materials
Total Credits of the Course	4	Hours per Week	4 hrs

Course Objectives:	1.To get familiar with different physical properties of materials and theories behind them
-----------------------	--

Course Content			
Unit	Description	Weightage* (%)	
1.	Electromagnetic radiation, interaction of light with matter, atomic and electronic interactions, optical properties of metals and non- metals, reflection, refraction, transmission and absorption, dark and photo conductivity.	25%	
2.	Introduction, classification of materials based on electrical conductivity, dielectric properties of materials, dielectric constant, strength and loss factor, capacitance and capacitors, field vector and polarization, types of polarization. Concept of symmetry, classification of materials based on symmetry, piezoelectric and converse effect, piezoelectric materials, pyroelectricity and pyroelectric materials, ferroelectricity, ferroelectric materials and antiferroelectric materials	25%	
3.	Introduction and basic concepts, magnetic dipoles and field vectors, magnetic induction, magnetization and magnetic susceptibility. Origin of magnetic moments, magnetic moments of body, magnetic moments of atoms, calculation of atomic magnetic moments, Bohr magnetron.	25%	
4.	Classification of magnetic materials, magnetic domains and walls, hysteresis, classification into soft and hard magnetic materials, applications, influence of temperature on magneticbehavior.	25%	

Teaching- Learning Methodology	Group discussion/ Panel/Presentation
--------------------------------------	--------------------------------------

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	2.Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)15%	
3.	University Examination	70%

Course Outcomes: Having completed this course, the learnerwill be able to		
1.	. Follow the reasons behind different behaviour exhibited by materials	
2.	Distinguish between electrical, optical as well as magnetic properties shown by different materials	
3.	Select different materials for the application in hand	

Sugges	Suggested References:		
Sr. No.	References		
1.	Materials Science and Engineering by William D. Callister Jr.and P.Leaver		
2.	An Introduction Materials Science for Engineering by J.C.Anderson, ,K.D.Leaver, R.D.Rawllings		
3.	Materials Science by Manas Chandra		

On-line Resources

Electromagnetism, Prof. Nirmal Ganguli, IISER Bhopal https://nptel.ac.in/courses/115/106/115106122/

Master of Science – Materials Science

(M.Sc.)(Materials Science) Semester -IV

Course Code	PS04CMTS54	Title of the Course	Project Work
Total Credits of the Course	8	Hours per Week	12

	 To develop knowledge and skill through lab experience To inculcateexperiential learning To educate with advanced synthesis and characterization techniques for materials
--	--

Cours	Course Content		
Unit	Description	Weightage* (%)	
1.	The students are assigned an individual/group research project. Under the project, the students have to carry out thorough literature survey using library, internet and available literature in the department. They have to carry out various experiments including testing and characterization using various sophisticated instruments. These findings are compiled in the form of a dissertation to be evaluated by the External examiner for the partial fulfillment of M.Sc. degree.	100%	

Teaching-	Demonstration/Group discussion/ Panel/Hands on training
Learning	
Methodology	

Evaluation Pattern			
Sr. No.			
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3) 15		
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)15%		
3.	. University Examination 70		

Course Outcomes: Having completed this course, the learner will be able to			
1.	Do experimental study on materials synthesis and characterization		
2.	Learn data interpretation, instrumental techniques and Hands-on training/demonstration		
3.	Improve their skillfor analysis of different materials		

Suggested References:		
Sr. No.	References	
1.	Students have to carry out thorough literature survey using library, internet and available literature in the Department.	

On-line Resources

Students are using INFLIBNET facility in the Department for On line referencing.

Master of Science – Materials Science

(M.Sc.)(Materials Science) Semester -IV

Course Code	PS04CMTS55	Title of the Course	Comprehensive Viva
Total Credits of the Course	1	Hours per Week	1 hr

Course Objectives:	1.

Course Content		
Unit	Description	Weightage* (%)
1.	Students have to appear for viva voce examination	100%

Teaching-	
Learning	
Methodology	

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Course Outcomes: Having completed this course, the learner will be able to	
1.	
2.	

Sugge	Suggested References:	
Sr. No.	References	
1.		
2.		
3.		
4.		

On-line resources to be used if available as reference material

On-line Resources

Master of Science – Materials Science

(M.Sc.)(Materials Science) Semester -IV

Course Code	PS04EMTS51	Title of the Course	Materials and Environment
Total Credits of the Course	4	Hours per Week	4 hrs
Course 1. Concept of environmental pollution related to air, water, solid waste			

	1	1
Objectives:	2. Attack by radiation,	microbes etc.

3. Effect of insects rodents in packaging

Course Content		
Unit	Description	Weightage* (%)
1.	Introduction to Environmental pollution, atmospheric pollutants, source of air pollutions, water pollution. Industrial effluents, pollution due to sewage and sludge, pesticides pollution, solid waste problems, metal pollutants, Environmental carcinogens, control of pollution.	25%
2.	Weathering, Air and Moisture, Radiation and heat, Pollutants, Microbial degradations, Control of deterioration, thermal protection, Optical properties, solar cells, lubrication, sublimation/ evaporation, loss of materials, Thermal Shock. Electrochemical nature of corrosion, Concepts of reaction at an electrodes. Nernst equation. Tafel equation and polarisation. Corrosion velocities, Bimetallic effects. Differential aeration, Pourbaix diagrams, Formulation of stainless steels. Corrosion of Iron, Zinc, Aluminium, Co-operation and selected alloys. Protection against corrosion.	25%
3.	Packing, Insect proof packaging, Rodent proof packing, Air Conditioning, Constant damp heat and cyclic damp heat, humidity and cycles of humidity, Isolation from environment radiations.	25%
4.	Trends in waste generation, maximum energy recovery from furnaces, recovery of waste Materials and raw materials from plants components, waste commission for energy recovery, economic refractory, control and Instrumentation, measuring and measuring devices.	25%

Teaching- Learning Methodology	Group discussion/ Panel/Presentation
--------------------------------------	--------------------------------------

Evalu	Evaluation Pattern	
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cou	Course Outcomes: Having completed this course, the learner will be able to	
1.	After studying this course, student can able to understand the concepts of green environment with minimum waste, side effects and high rate of production.	
2.	Knowledge will be useful for the individual and for society at home and outside the home	

Suggested References:	
Sr. No.	References
1.	Theory of corrosion and protection of metals, Tomashov N. D.
2.	Corrosion engineering - M. G. Fontana
3.	Science of Engineering Materials – Manas Chanda
4.	Waste recycling for energy conservation – Davidkut and Gerard Nare

On-line Resources

https://babel.hathitrust.org/cgi/pt?id=uc1.31210023605015&view=1up&seq=1

https://www.britannica.com/science/water-pollution

https://nptel.ac.in/courses/113/104/113104061/

https://nptel.ac.in/courses/122/106/122106030/

Master of Science – Materials Science

(M.Sc.)(Materials Science) Semester -IV

Course Code	PS04EMTS52	Title of the Course	Ceramic Technology
Total Credits of the Course	4	Hours per Week	4

Objectives:	 To improve knowledge in ceramic processing and product development To get updated with novel manufacturing techniques for ceramics To provide information on use of advanced commis materials
	3. To provide information on use of advanced ceramic materials

Course Content		
Unit	Description	Weightage* (%)
1.	Raw to powder ceramics, Laws of size reduction, Processing of traditional ceramics, Ball milling, Crushing, Pug mill, Planetary mill, Filter press, Cake forming, Mechanical press, Jigger and Jolly process, Hydraulic press, Pascal's law, Spray drying	25
2.	Pressing techniques: Dry and wet pressing, Die pressing, Isostatic Pressing, CIP and HIP, Extrusion, Injection moulding, Casting: Slip, Gel and Tape casting, Tiles manufacturing	25
3.	Advanced non-oxide and oxide ceramics processing, Additives, Flocculation, Lubricants, Binders, Firing, Porosity and sintering, Glazing raw materials, Glazing techniques, Defects of glazing, Powder preparation by Important techniques, Waste materials, Thermal processing, CVD, CVR, CVI, Polymer pyrolysis, Plasma processing	25
4.	Glass Processing, Characterization and industrial applications of Glass and Ceramics, Bioceramics and applications, Optical properties, Mechanical properties, Tribological properties of ceramics, Mechanisms of tribological wear	25

Teaching- Learning Methodology	Group discussion/ Panel/Presentation
--------------------------------------	--------------------------------------

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Course Outcomes: Having completed this course, the learner will be able to	
1.	Get additional technological knowledge on ceramic products and it can open the gateway to become entrepreneurs.
2.	Students will get opportunity to build their career at ceramic based industries and at research centers.
3.	Enhance knowledge in ceramic processing for industrial products.

Suggested References:	
Sr. No.	References
1.	Science of Engineering Materials by Manas Chanda
2.	Ceramic Science for Materials Technologists by I. J. McColm
3.	Industrial Ceramic by F. Singer, S. Singer
4.	Handbook of Ceramics by S. Kumar

On-line Resources

https://www.cgcri.res.in/students/

https://ceramics.org/about/what-are-engineered-ceramics-and-glass

https://matmatch.com/learn/material/glass-ceramics

