

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

PROGRAMME STRUCTURE MSc (Electronics) Semester: III

Programme Outcome (PO) - For MSc Electronics Programme	O.1 The course begins with the foundation concepts of core electronics allied fields O.2 The curriculum is designed to train the students in basic and advanced areas of Electronics by Keeping in mind the latest advance the field. O.3 The purpose of this course is to inculcate skills that are relevant for industry and cater to the requirements of the R & D Departm and Industry. O.4 This M.Sc. Program enables student to develop Speaking Presentation skills, they are encouraged to deliver seminars on a wide range of topics covering the different areas of Electronics.				
Programme Specific Outcome (PSO) - For MSc Electronics Semester	PSO.1 M.SC. (Electronics) Program aims to develop specialized knowledge and skills both in the field of electronics for industrial automation and of the design of electronics systems. PSO.2 This course focuses on concepts relating to the Fabrication & Operation of semiconductor devices, measurement methodologies and the characteristics of sensors and instrumentation, embedded systems, VLSI Technology, Integrated Circuit manufacturing techniques, Optical Fiber communication systems, Computer Hardware etc. PSO.3 The main objective is to develop the ability and skills to understand, manage and promote technological innovation while adapting to the rapid changes typical of high technology sectors.				

To Pass

At least 40% Marks in the University Examination in each paper and 40% Marks in the aggregate of University and Internal examination in each course of Theory, Practical & 40% Marks in Viva-voce.

Course	Course Code	Name of Course	Theory/ Practical	Credit	Exam Duration	Com	ponent of Ma	ırks
Туре			Fractical		in Hrs	Internal	External	Total
CORE COURSE	PS03CELE51	Principles of Control Systems	T	4	3	30	70	100
	PS03CELE52	Digital and Microwave Communication Systems	T	4	3	30	70	100
	PS03CELE53	Computer Hardware & Networking	T	4	3	30	70	100
	PS03CELE54	Practical	P	4	3	30	70	100
	PS03CELE55	Project Work	P	4	3	30	70	100
	PS03CELE56	Comprehensive Viva	=	1	=	=	50	50

Vallabh Vidyanagar, Gujarat

ELECTIVE	PS03EELE51	Thin Film Technology	T	4	3	30	70	100
COURSE	PS03EELE52	Digital Signal Processing	T	4	3	30	70	100
(Any One)	PS03EELE53	ARM Programming and Embedded	T	4	3	30	70	100
		Communication Protocols						
			Total Credits :	25		-	Total Marks:	650

			The court		Exam	Comp	onent of Ma	rks
Course Type	Course Code	Name Of Course	Theory/ Practical	Credit	Duration	Internal	External	Total
			Fractical		in hrs	Total	Total	Total
	PS01CELE51	Semiconductor Science and Devices	T	4	3	30	70	100
Core Course	PS01CELE52	Applications of ICs And Fuzzy Electronics	T	4	3	30	70	100
	PS01CELE53	8 Bit Microcontroller and Applications	T	4	3	30	70	100
	PS01CELE54	Practical	P	4	3	30	70	100
	PS01CELE55	Project Work	P	4	3	30	70	100
	PS01CELE56	Comprehensive Viva	=	1	=	=	50	50
Elective	PS01EELE51	Analytical and Bio Medical Instruments	T	4	3	30	70	100
Courses	PS01EELE52	Network Analysis	Т	4	3	30	70	100

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Master of Science (Electronics)

M.Sc.(Electronics) Semester III

Course Code	PS03CELE51	Title of the Course	Principles of Control Systems
Total Credits of the Course	4	Hours per Week	3+1=4 Hours

Course	1. To introduce students the theory and practice of control systems.
Objectives:	2. To design feedback control systems and their Industrial applications.
	3. To aware students about types of controllers used in industries.
	3. To understand the stability criteria of process control systems.

Course	Course Content					
Unit	Description	Weightage* (%)				
1.	Introduction, Definition, Classification of Control Systems with examples, Characteristics of control systems, Open and Closed loop Systems, Single I/P - Single O/P systems, Multivariable system, Transfer Function, Impulse Response, Pole-Zero Plot, Rules for Block Diagram Reduction, Representation of Block Diagram, Signal Flow graph: Terminoligy, Property, Mathematical Modeling of Systems, Control Action & Controllers, ON/OFF, Proportional, Integral, Derivative and PID Controllers.	25				
2.	Standard test Signals, Time Domain Analysis, Transient response design and Steady state error design, Analysis of Type 0,1 and 2 Systems, Time Response of higher order Systems, Frequency Domain Analysis, Conceptual Approach to Frequency Response, Relation between Transfer Function and Frequency Response, Co-relation between Time and Frequency Response Specifications.	25				

3.		Response analysis of control system and stability criterion, Concept of Root Locus, Angle and Magnitude Condition, Construction Of Root					
	Locus, In	verse Root Locus, Addition of Poles and Zeros on Root					
	Locus, Sta	ability of Control Systems : Routh-Hurwitz Criterion, Bode					
	Plots and	Stability Analysis of Systems.					
4.	Polar Plo	ts, Stability on Polar Plots, Nyquist Analysis, Stability	25				
	from Nyq	uist Plot, Constant gain and Phase Loci : M and N Circles,					
	Application	ons, Nichols Chart, Compensation of Control Systems, Types					
	of Com	npensation, Phase-Lead, Phase-Lag, Phase-Lag-Lead					
	Compensation, Feedback Compensation.						
Teachi	Class room Teaching (Offline/Online), Use of Power point Presentation,						
Learni	earning Tutorial Problem Solving, Assignments, Group Discus						
Metho	Animation and Presentation, Experimental demonstration. Tools.						

Evaluatio	Evaluation Pattern					
Sr. No.	Details of the Evaluation	Weightage				
1.	Internal Written Examination (As per CBCS R.6.8.3)	15%				
2.	Internal Continuous Assessment in the form of Practical, Vivavoce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%				
3.	University Examination	70%				

Cou	Course Outcomes: Having completed this course, the learner will be able to				
1.	Learn design of different control mechanisms.				

2.	Understand and design many control loops found in industries.
3.	Analyze the control strategy.
4.	Know the selection of suitable control system and its consequences.
5.	Identify choice and applications of control system in real time world.

Suggeste	ed References:
Sr. No.	References
1.	Principles of Control Systems S.C.Goyal and V.A.Bakshi (Technical Publications, Pune, INDIA)
2.	Automatic Control Systems Benjamin C. Kuo, (Prentice Hall of India Pvt. Ltd., New Delhi ,INDIA)
3.	Feedback Control Systems S.D.Bhide, S.Satyanarayan & N.A. Jalgaonkar (Technova Publications, Pune (INDIA)
4.	Modern Control Engineering Katsuhiko Ogata (Prentice Hall of India Pvt. Ltd., New Delhi , INDIA
5.	Control Systems Engineering I.J.Nagrath & M. Gopal, Wiley Eastern, New Delhi (INDIA)
6.	Control Engineering: Theory and Practice M.N.Bandyopadhyay (Prentice Hall of India Private Limited, New Delhi (INDIA)
7.	Control Systems Engineering Normal Nise (Wiely Publications)
8.	Modern Control Systems Richard Dorf, Robert H.Bishop (Addison Wesley Longman Inc., USA))
9.	Digital Control Systems

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

	Kuo (Oxford University Press , New York ,USA))		
10.	Control Engineering an Introductory Course J.wilkie, M.Johnson, R.Katebi (Palgrave, USA)		
11.	Process Control (Concepts, Dynamics & Applications) S K Singh (PHI learning Private Limited)		
12.	Control Systems A. Anand kumar (Prentice-Hall India)		
13.	Control Systems K.Padmanabhan (Wiley)		
14.	Control Systems by R V Dukkipati		
15.	Control System Engineering A. Nagoor Kani (RBA Publications)		

On-line resources to be used if available as reference material

On-line Resources

- 1. http://www.tandfonline.com/doi/pdf/10.1080/00207216108937312
- 2. https://www.academia.edu/36199523/_Chapter1_Introduction_to_Control_Systems
- 3. https://www.slideserve.com/wyman/chapter-4-control-principles
- 4. https://slideplayer.com/slide/7708897/
- 5. On Line Video Lectures of course on Control Systems NPTEL

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Master of Science (Electronics) M.Sc. (Electronics) Semester III

Course Code	PS03CELE52	Title of the Course	Digital and Microwave Communication Systems
Total Credits	1	Hours per	3+1=4 Hours
of the Course	' '	Week	

Course	To get the learner an understanding of various Digital Radio and		
Objectives:	Digital Transmission systems.		
	2. To help the learner develop an understanding of Time Division and		
	Frequency Division Multiplexing techniques.		
	3. To provide an understanding of the Microwave and Satellite		
	Communication Systems.		
	4. To help the learner understand about the Mobile Telephone Systems.		

Course	Course Content			
Unit	Description	Weightage*		
1.	Digital Communication Systems, Digital Radio-Amplitude Shift Keying (ASK), Frequency Shift Keying, (FSK), Phase Shift Keying (PSK), Binary Phase Shift Keying (BPSK), Quaternary Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (QAM), Differential Phase Shift Keying (DPSK), Digital Transmission - PCM, Delta Modulation, Data Communication Hardware.	25		
2.	Data Communication Codes, Error Detection and Correction, Multiplexing- Time- Division Multiplexing, T1 Digital Carrier System, Introduction to Codecs, Combo chip, Line Encoding, Frequency- Division Multiplexing- Composite Base Band Signal, Formation of Group, Super Group, Master Group.	25		

3.	Microwave Communication- Simplified Microwave System,	25		
	Microwave transmitter and receiver, Microwave repeaters,			
	Diversity- frequency, space and polarization, Microwave System			
	Gain, Free Space Path Loss, Fade Margin, Receiver Threshold,			
	Noise Figure, Radar, Synthetic Aperture Radar			
4.	Satellite Communication- Types of artificial satellites,	25		
	geostationary satellites, Orbital Patterns, Look angles, Orbital			
	spacing and frequency allocation, Satellite system, link models,			
	Satellite system parameters Cellular Communication- The cellular			
	concept and its implementation, Cellular carriers and frequencies-			
	channel allocation and frequency reuse, Multiple Access			
	technologies for cellular system, Mobile call termination, hand off.			

Teaching-Learning	Classroom Teaching (Offline/Online), learning from online resources
Methodology	

Evaluation Pattern			
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

Course Outcomes: Having completed this course, the learner will be able to			
1.	Get an understanding of various Digital Radio and Digital Transmission systems.		
2.	Understand the systems of Time Division and Frequency Division Multiplexing		

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

	techniques.
3.	Understand the concepts of Microwave and Satellite Communication Systems.
4.	Know about the Mobile Telephone Systems.

Suggested References:			
Sr. No.	References		
1.	Wayne Tomasi (2014). Advanced Electronic Communication System (6 th ed.). Prentice Hall International		
2.	Dennis Roddy & John Coolen (1995) Electronic Communication.(4 th ed.).Prentice Hall India		
3.	George Kennedy, Bernard Davis, SRM Prasanna.(2017). Electronic Communication System. Mcgraw Hill Book Co.		

On-line resources to be used if available as reference material			
On-line Resources			
1.Online Videos by NPTEL on Digital Communication			
2.Online Videos by NPTEL on Microwave Communication			
3.Online Videos by NPTEL on Satellite Communication			
4.Online Videos by NPTEL on Mobile Communication			

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Master of Science (Electronics) M.Sc. (Electronics) Semester III

Course Code	PS03CELE53	Title of the Course	Computer Hardware and Networking		
Total Credits of the Course	4	Hours per Week	3+1=4 Hours		

Course	1.To provide much needed knowledge of computer hardware and				
Objectives:	networking.				
	2. Enabling students to identify and rectify the onboard computer hardware,				
	software and network related problems				
	3. The students will be able to understand the hardware specifications that				
	are required to run Network operating system.				
	4.Upgrading of existing hardware/software as and when required,				
	install/configure the application program and network related problems.				

Course Content		
Unit	Description	Weightage*
1.	Microprocessor types & Specifications, Motherboard & BUS, PC Components features and system design, LAN & WAN, Host-Workstation and Server, Peer-to-peer and Client Server Architecture. Physical Topologies- BUS-Star-Ring-Mesh-Wireless, Selecting the right Topology.	25
2.	Physical Media- Coaxial Cable, Twisted Pair Cable, Fibre Optic Cable, Common Network Connectivity Devices, Network Interface Adapter – Hub – Switch- Router, Ethernet Frame Structure IEEE 802.3, Wireless Network, WLAN, WPAN, IEEE 802.11 Frame Structure, Wireless Antenna, Wireless Network Connectivity Devices, WiMAX, GAN.	25
3.	The OSI Reference Model, Networking Protocols – TCP/IP – IPX/SPX – NetBEUI, TCP/IP Protocol Stack, Understanding IPV4 and IPV6 Addressing, Configuring TCP/IP on	25

	Windows, TCP/IP Utilities.	
4.	Networking with Windows Operating System, Windows 20XX	25
	Operating System, Architecture, Workgroups, Domains and Active	
	Directory, Installing Windows 20XX, Installing & Configuring DNS	
	and Active Directory, Administering and Securing Active Directory	
	Managing User Groups, Sharing - Securing and Accessing Files &	
	Folders.	

Teaching-	Lectures, Seminars and tutorials, Independent study, Laboratory and	
Learning	practical learning, Field trips, Problem-based/enquiry-based learning,	
Methodology	Projects, e-learning	

Evaluation Pattern			
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

Cou	Course Outcomes: Having completed this course, the learner will be able to			
1.	Understand basic concept & structure of Computer Hardware & Networking Components, Structured cabling of Network Nodes, Installation and Configuration of Network Operating System etc.			
2.	Identify the existing configuration of the computers & peripherals. Upgrading the same as & when required.			
3.	Apply their knowledge about computer peripherals to identify/rectify problems.			

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Sugge	Suggested References:			
Sr. No.	References			
1.	Computer Networks Andrew S. Tanenbaum, Prentice Hall of India Pvt. Ltd., New Delhi			
2.	Upgrading and Repairing PCs Scott Mueller, Pearson Education Asia			
3.	Troubleshooting, Maintaining & Repairing PCs Stephen J. Bigelow, Tata McGrew Hill Publishing Company Limited, New Delhi			
4.	Computer Networks Protocols, Standards and Interfaces Uyless Black, Prentice Hall of India Pvt. Ltd., New Delhi			
5.	Microsoft Windows Server Administration Essentials Tom Carpenter			
6.	Installing, Configuring & Administering Windows 200X Professional Windows 200X Server, Windows 200X Networking Infrastructure Windows 2000 Directory Services Alan R. Carter, IDG Books India (P) Ltd.			

On-line resources to be used if available as reference material
On-line Resources
https://oli.cmu.edu/courses/pc-hardware-open-free/
https://info.microsoft.com/ww-landing-ultimate-guide-to-windows-server-2019.html
https://www.ncertbooks.guru/computer-network-notes/

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Master of Science (Electronics) M.Sc. (Electronics) Semester III

Course Code	PS03EELE51	Title of the Course	Thin Film Technology	
Total Credits of the Course	4	Hours per Week	3+1 =4 Hours	

Course Objectives:	 Acquire the knowledge of thin film preparation by various techniques. Analyse the behaviour of the thin films by different characterization
	methods
	3. Apply the knowledge to develop a device.

Course	Course Content		
Unit	Description	Weightage*	
1.	Thin Film Definition, Vacuum Quality Pressure Range, Thin Film Requirements, Physical Vapour Deposition(PVD), Morphology of PVD, Thermal Evaporation PVD, Vacuum Procedures, Flash Evaporation, Electron Beam PVD, Pulse Laser Deposition, Sputtering: DC - RF- Magnetron Sputtering, High Power Impulse Magnetron Sputtering(HIPIMS).	25	
2.	Chemical Vapour Deposition, Kinetics of CVD, Choice of Chemical Reactions, Nucleation, CVD System, CVD Reactor Types by process, Vacuum Pumps: Introduction and Classification, Positive Displacement (Oil Sealed Rotary) Pump, Momentum Transfer (Diffusion and Turbo Molecular)Pump, Getter-Ion Pump. Entrapment (Cryo) Pump,	25	
3.	Vacuum Gauge: Pirani Gauge, Cold Cathode Ionization (Penning) Gauge, Types of Boats, Substrate and Mask, Thin Film Characterization Techniques: Surface Profilometer, UV-Vis-IR Spectrophotometer, X-Ray Diffraction-Instrumentation.	25	

4.	Electron Diffraction - Transmission Electron Microscopy, Electron	25
	Probe Micro Analyzer (EPMA/EDAX), Scanning Electron	
	Microscopy, Thin Film Passive Devices- Resistor-Capacitor and	
	their applications, Thin Film Active Devices - Diode- Transistor	
	and their applications, Transparent Conducting Oxide Thin Films and	
	its Applications.	

Teaching-	Γeaching- Lectures, Seminars and tutorials, Independent study, Laboratory and	
Learning	practical learning, Field trips, Problem-based/enquiry-based learning,	
Methodology	Projects, e-learning	

Evalu	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

Cou	Course Outcomes: Having completed this course, the learner will be able to	
1.	Discuss the differences and similarities between different vacuum based deposition techniques	
2.	Evaluate and use models for nucleating and growth of thin films,	
3.	3. Asses the relation between deposition technique, film structure, and film properties, discuss typical thin film applications	
4.	Develop thin film based devices for various applications.	

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Sugges	gested References:		
Sr. No.	References		
1.	Thin Film Technology and Applications K.L.Chopra and L.K.Malhotra, Tata Mc-Graw Hill, N.Delhi, (India)		
2.	Thin Film Device Applications K.L. Chopra and Indraject Kaur, IIT, New Delhi, India		
3.	Active and Passive Thin Film devices J.J.Coutts., Acadamic Press,NY (USA)		
4.	Hand Book of Thin Film Technology Leon I.Maissel and Reinhard Glang, McGraw Hill Book.,NY (USA)		
5.	Vacuum Technology A. Roth		

On-line Resources

https://www.coursera.org/lecture/high-throughput/vapor-deposition-of-thin-films-introductory-concepts-17I53

https://www.youtube.com/results?search_query=vacuum+pump

https://www.youtube.com/results?search_query=thin+film+deposition+techniques

 $https://www.youtube.com/results?search_query=scanning+electron+microscope+and+transmission+electron+electron+electron+electron+electron+electron+electron+electron+electron+electron+electron+electron+electron+electron+electron+elect$

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Master of Science (Electronics)

M.Sc. (Electronics) Semester III

Course Code	PS03EELE52	Title of the Course	Digital Signal Processing
Total Credits of the Course	4	Hours per Week	3+1=4 Hours

Course Objective	1. To make students familiar with the most
	important methods in DSP, including digital
	filter design, transform-domain processing and
	importance of Signal Processors.
	2. To make students aware about the meaning and
	implications of the properties of systems and
	signals

Course Co	Course Content		
UNIT	Description	Weightage*	
	_	(%)	
1	Introduction, Classification of Signals,		
	Singularity Functions, Classification of Systems,		
	Transformation of Discrete Time Signals,		
	Representations of Systems, Trigonometric	25	
	Fourier Series, Complex Fourier Series,		
	Parseval's Identity for Fourier Series, Power		
	Spectrum of a Periodic Function.		

Vallabh Vidyanagar, Gujarat

2	Fourier Transform of Some Important Signals,	
	Fourier Transform of Power and Energy Signals,	
	Discrete-Time Fourier Transform (DTFT), Fast	
	Fourier Transform (FFT), The Z-Transform,	25
	Properties of the Z-Transform, Inversion of the	
	Z-Transform, The one-sided Z-Transform,	
	Applications of Z Trasform.	
3	Analysis of Linear Time-Invariant Systems in the	
	Z-Domain, Finite Impulse Response (FIR)	
	Filters; Magnitude Response and Phase Response	
	of Digital Filters, Frequency Response of Linear	25
	Phase FIR Filters, Design Techniques for FIR	
	Filters, Infinite Impulse Response(IIR), Design	
	Techniques of IIR Filters.	
4	Realization of Digital Linear Systems, Block	
	diagram and Signal flow graph, Basic Structures	
	for IIR Systems, Basic Structures for FIR	
	Systems, Applications of Digital Signal	25
	Processing; Voice Processing, Application of	
	Radar, Image Processing, Introduction to DSP	
	Software.	

Teaching-	Traditional Classroom teaching with use of Multimedia
Learning	facility in the classroom.
Methodology	Use of Computer Tool for live demonstration and
	problem / design based approach.
Methodology	•

Vallabh Vidyanagar, Gujarat

Evaluation Pattern		
Sr. No	Details of Evaluation	Weightage
1	Internal Written / Practical Examination (As per	15%
	CBCS R.6.8.3)	
2	Internal Continuous Assessment in the form of	15%
	Practical, Viva Voce, Quizzes, Seminars,	
	Assignments, Attendance (as per CBCS R6.8.3)	
3	University Examination	70%

Cour	Course Outcome. Having completed this course, the learner will be able to		
1	1 Design, implementation, analysis and comparison of digital filters		
	for processing of discrete time signals		
2	Integrate computer-based tools for engineering applications		
3	Employ signal processing strategies at multidisciplinary team		
	activities.		

Sugg	Suggested References:		
Sr.	References		
No.			
1	Signals and Systems		
	Simon Haykins and Barry Vankeen John Wiley & Sons, N.Y. (U.S.A)		
2	Signals and Systems: Continuous and Discrete		
	Rodger E. Ziemer, William A. Tranter and D. Ronald Fannin Max		
	Well Macmillan Int. (U.S.A)		
3	Digital Signal Processing		
	Alan. V. Oppenheim and Ronald. W. Schafer Prentice Hall of India,		
	New Delhi (INDIA)		

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

4	Theory and Applications of Digital Signal Processing
	Lawrence R. Rabiner and Bernard Gold
	Prentice Hall of India, New Delhi (INDIA)
5	Introduction to Digital Signal Processing
	Johnny R. Johnson
	Prentice Hall of India, New Delhi (INDIA)
6	Digital Signal Processing
	John G. Proakis and Dimitris G. Manolakis Prentice Hall of India,
	New Delhi (INDIA)

On-line resources to be used if available as reference material

On line resources.

- 1. www.cl.cam.ac.uk/teaching/0809/DSP/slides-2up.pdf
- 2. www.tutorialspoint.com/digital_signal_processing/...
- 3.ONLINE Video Lectures on Digital Signal Processing -NPTEL

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Master of Science (Electronics)

M.Sc. (Electronics) Semester III

			ARM
Course Code	PS03EELE53	Title of the Course	Programming and Embedded Communication Protocols
Total Credits of the Course	4	Hours per Week	3+1=4 Hours

Course Objective	1. To understand the basics of embedded system
Course Objective	1. 10 understand the basies of embedded system
	2. To understand the architecture, assembly language
	an interfacing of different 8-bit microcontrollers
	3. To learn embedded C programming
	4. To learn software techniques to embed codes in to
	the systems
	5. To learn communication standards and protocols
	ARM Programming

Course Content		
UNIT	Description	Weightage*
		%
1	ARM instruction set, Thumb instruction set •	
	ARM memory interface: Cycle Types, Address	
	Timing, Data Transfer Size, Instruction Fetch,	25
	Memory Management, Locked Operations,	23
	Stretching Access Times, The ARM Data Bus,	
	The External Data Bus.	

Vallabh Vidyanagar, Gujarat

2	ARM Debug Interface: Debug Systems, Debug Interface Signals, Scan Chains and JTAG Interface, Reset, Pull-up Resistors, Instruction Register, Public Instructions, Test Data Registers, ARM7TDMI Core Clocks, Determining the Core and System State, The PC's Behavior During Debug, Priorities / Exceptions, Scan Interface Timing, Debug Timing. Embedded Communication Protocols:	25
3	Inter-Integrated Circuit (I2C) BUS: I2C bus specification, general characteristics, bus signals, Address mechanism, Extensions to the standard-mode I2C-bus specification, Applications. System Management Bus (SMBus): Introduction, General characteristics, Physical Layer, data link layer, Network layer, differences between SMBus and I2C, Device addressing.	25
4	Controller Area Network (CAN): Specifications, basic concepts, Frame types, bus signals, Error handling, Addressing. Serial peripheral interface (SPI): Introduction, Specifications, master slave configuration, applications.	25

Traditional Classroom teaching with use of Multimedia
facility in the classroom.
Use of Computer Tool for live demonstration and
problem / design based approach.

Vallabh Vidyanagar, Gujarat

Evaluation Pattern		
Sr. No	Details of Evaluation	Weightage
1	Internal Written / Practical Examination (As per	15%
	CBCS R.6.8.3)	
2	Internal Continuous Assessment in the form of	15%
	Practical, Viva Voce, Quizzes, Seminars,	
	Assignments, Attendance (as per CBCS R6.8.3)	
3	University Examination	70%

Course Outcome. Having completed this course, the learner will be able to		
]	1	Upon Completion of the course students will have basic concepts of
		ARM Architecture, interfacing and programming along with study
		and implementation of various communication protocols

Suggested References:		
Sr.	References	
No.		
1	Real-Time Embedded Multithreading: Using ThreadX® and ARM®,	
	Edward L. Lamie, CMPbooks.	
2	ARM System Developer's Guide: Designing and Optimizing System	
	Software (The Morgan Kaufmann Series in Computer Architecture	
	and Design), Andrew Sloss, Dominic Symes, Chris Wright.	
3	ARM Architecture Reference ARM System-on-Chip Architecture	
	(2nd Edition), Steve Furber, Addison-Wesley Manual (2nd Edition),	
	David Seal. Addison-Wesley	

On-line resources to be used if available as reference material
On line resources.
1. gurusaiprasanth.files.wordpress.com/2015/09/
2. www.csie.ntu.edu.tw//lec08_ARMasm_4up.pdf

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

PROGRAMME STRUCTURE MSc (Electronics) Semester: IV

Programme Outcome (PO) - For MSc Electronics Programme	The course begins with the foundation concepts of core electronics allied fields The curriculum is designed to train the students in basic and advanced areas of Electronics by Keeping in mind the latest advances in the field. The purpose of this course is to inculcate skills that are relevant for industry and cater to the requirements of the R & D Department and Industry. This M.Sc. Program enables student to develop Speaking Presentation skills, they are encouraged to deliver seminars on a wide range of topics covering the different areas of Electronics.	
Programme Specific Outcome (PSO) - For MSc Electronics Semester	PSO.1 M.SC. (Electronics) Program aims to develop specialized knowledge and skills both in the field of electronics for industrial automation and of the design of electronics systems. PSO.2 This course focuses on concepts relating to the Fabrication & Operation of semiconductor devices, measurement methodologies and the characteristics of sensors and instrumentation, embedded systems, VLSI Technology, Integrated Circuit manufacturing techniques, Optical Fiber communication systems, Computer Hardware etc. PSO.3 The main objective is to develop the ability and skills to understand, manage and promote technological innovation while adapting to the rapid changes typical of high technology sectors.	

To Pass	At least 40% Marks in the University Examination in each paper and 40% Marks in the aggregate of University and Internal examination in each course of
10 rass	At least 40% Marks in the University Examination in each paper and 40% Marks in the aggregate of University and internal examination in each course of
	Theory, Practical & 40% Marks in Viva-voce.

CORE	PS04CELE51	IC Fabrication Technology	T	4	3	30	70	100
COURSE	PS04CELE52	Optical Fiber Communication System	T	4	3	30	70	100
	PS04CELE53	Sensor Technology	T	4	3	30	70	100
	PS04CELE54	Practical	P	4	3	30	70	100
	PS04CELE55	Project Work	P	4	3	30	70	100
	PS04CELE56	Comprehensive Viva	=	1	=	=	50	50

Vallabh Vidyanagar, Gujarat

ELECTIVE	ELECTIVE PS04EELE51 Design of VLSI Systems		T	4	3	30	70	100
COURSE	1 50 ILLEGE Computer Busea Maustriai Control		T	4	3	30	70	100
(Any One)	(Any One) PS04EELE53 Principles of Nano-Electronics		T	4	3	30	70	100
	PS04EELE54	Advanced Digital Systems Design with HDL		4	3	30	70	100
PS04EELE55 CMOS Technology & VLSI Design T		T	4	3	30	70	100	
	Total Credits :					7	Total Marks:	650

	Course Code	le Name Of Course	Theory/		Exam	Component of Marks		
Course Type			Theory/ Practical	Credit	Duration	Internal	External	Total
			Fractical		in hrs	Total	Total	Total
	PS01CELE51	Semiconductor Science and Devices	T	4	3	30	70	100
Core Course	PS01CELE52	Applications of ICs And Fuzzy Electronics	T	4	3	30	70	100
	PS01CELE53	8 Bit Microcontroller and Applications	T	4	3	30	70	100
	PS01CELE54	Practical	P	4	3	30	70	100
	PS01CELE55	Project Work	P	4	3	30	70	100
	PS01CELE56	Comprehensive Viva	=	1	=	=	50	50
Elective	PS01EELE51	Analytical and Bio Medical Instruments	T	4	3	30	70	100
Courses	PS01EELE52	Network Analysis	Т	4	3	30	70	100

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Master of Science in Electronics M.Sc.(Electronics) Semester IV

Course Code	PS04CELE51	Title of the Course	IC Fabrication Technology
Total Credits of the Course	4	Hours per Week	3+1 = 4 Hours

Course Objectives:	1.To learn each major IC fabrication process steps eg. Wafer Preparation,Epitaxy, oxidation, doping, depositions, lithography, etching, Annealing.2.To know IC packaging.
-----------------------	---

Cours	Course Content					
Unit	Description	Weightage*				
1.	Semiconductor Materials, Crystal Structures, Energy Bands, Intrinsic Career Concentration, Donors and Acceptors, Electron Mobility, Resistivity and Conductivity, Crystal Growth, Electronic Grade Silicon, Czochralski Crystal Growth, Float-Zone Process, Characterization, Wafer Preparation, Fabrication of IC, Epitaxy, Chemical Vapor Deposition, Growth Model, Growth Chemistry, Doping and Autodoping, Reactors, Defects, Selective Epitaxial Growth, Low-Temperature Epitaxy (LTE) and Molecular Beam Epitaxy (MBE), Rapid Thermal Epitaxy (RTE).	25				
2.	Oxidation, Theory of Oxide Growth, Experimental Fits- Orientation Dependence and Effects of Impurities, High Pressure Oxidation, Plasma Oxidation, and Rapid Thermal Oxidation, Oxide Properties, Dopant Redistribution at the Interface, Lithography, Clean Room, Optical Lithography, Masks, Photoresist, Pattern Transfer, Electron Lithography, X-Ray Lithography, Ion Lithography, Comparison of Lithographic Techniques	25				
3.	Etching, Wet Chemical Etching, Dry Etching, Plasma Excitation and Plasma - Surface Interaction, Simple Plasma Etching Systems, Diffusion, Diffusion Theory, Diffusion Profiles, Constant-Surface-	25				

Vallabh Vidyanagar, Gujarat

	Concentration Diffusion, Constant-Total-Dopant Diffusion, Dual Diffusion Process, Extrinsic Diffusion, Diffusion in Silicon, Oxide Masking, Lateral Diffusion, Fast Diffusants, Diffusion in Polysilicon, Ion Implantation, Implant Uniformity, Contamination	
4.	Annealing, Furnace annealing, Rapid Thermal Annealing, Metallization, Metallization Choices, Metal Corrosion, Testing-Assembly and Packaging of IC, Die Bonding and Wire Bonding, Flip-Chip Technique, Hermetic and Plastic Packages, Through-Hole and Surface-Mount Packages, Tape Carrier Packages.	25

Teaching-	Lectures, Seminars and tutorials, Independent study, Laboratory and
Learning	practical learning, Field trips, Problem-based/enquiry-based learning,
Methodology	Projects, e-learning

Evalu	Evaluation Pattern					
Sr. No.	Details of the Evaluation	Weightage				
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%				
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%				
3.	University Examination	70%				

Cou	Course Outcomes: Having completed this course, the learner will be able to					
1.	Understand integrated silicon based devices' process steps					
2.	Understand all silicon fabrication processes, their metrologies and related theory.					
3.	Develop an understanding of the complexities involved in a complete fabrication cycle of an integrated circuit.					

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Sugges	sted References:
Sr. No.	References
1.	VLSI Technology S. M. Sze, (Mc Graw-Hill International Edition, N.Y, U.S.A.)
2.	VLSI Technology Sujata Pandey & Manoj P Pandey (Dhanpat Rai & Co. New Delhi, INDIA)
3.	The Science and Engineering of Microelectronic Fabrication Stephen A Campbell, (Oxford University Press Inc. N.Y., U.S.A.)
4.	Semiconductor Devices - Physics and Technology S. M. Sze, (John Willey & Sons Inc., U.S.A.)
5.	Modern Semiconductor Fabrication Technology Peter Gise & Richard Blanchard (Reston Book - Prentice Hall, N.J., U.S.A.)
6.	Integrated Circuits K.R.Botkar (Khanna Publishers, New Delhi, INDIA)

On-line resources to be used if available as reference material

On-line Resources

1.https://nptel.ac.in/content/storage2/courses/113106062/Lec1.pdf to

https://nptel.ac.in/content/storage2/courses/113106062/Lec31.pdf (please change Lec

Number in given link address)

 $2. https://www.youtube.com/results?search_query=ic+fabrication+process+steps\\$

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

> Master of Science (Electronics) M.Sc. (Electronics) Semester IV

Course Code	PS04CELE52	Title of the Course	Optical Fiber Communication System
Total Credits		Hours per	3+1=4 Hours
of the Course		Week	

Course	1. To introduce to the learners the principle of transmission of
Objectives:	guided light through optical fiber, the types of the Fiber cables,
	modes of propagation and possible losses and dispersion in the
	transmission.
	2. To provide an understanding about the Light Sources for
	Optical Fibers, mainly various types of LED and Lasers and
	also Detectors.
	3. To generate an understanding about the Fiber optic
	communication systems.

Course	Course Content		
Unit	Description	Weightage*	
		(70)	
1.	Light propagation through Optical Fibers, Ray theory, meridional rays, skew rays, Types, Characteristics and data rates in optical fibers, Modes in fibers, Losses and Dispersion in Optical Fibers, Fiber materials, Fiber splicing, connectors, couplers and switches, connection losses.	25	
2.	Optical processes in semiconductors - Optical absorption and emission, Spontaneous and stimulated emission Optical sources –LED-working process of simple PN Junction LED, Special Class LEDs- Double Hetero-junction LED, Edge Emitting LED, Surface Emitting LED, LASER- Distributed feedback Laser, Quantum–well Lasers, Drive Electronics-	25	

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

	LED drivers, Laser diode drivers.	
3.	Optical detectors- Principle of operation— photo detectors, P-N, PIN, Avalanche photodiode, Phototransistor, Responsivity and Quantum Efficiency of Photo detectors, Delectability, Noise and bandwidth, Detector circuitry and receivers.	25
4.	Fiber optic communication system –Optical Time Division Multiplexing, Wave length Division Multiplexing-Demultiplexing, Optical Fiber measurement and field testing-Equipment used in field testing-Optical Power meter, Optical Time Domain Reflectometer (OTDR), Application of Fiber optics- Long –Haul communication, ISDN.	25

Teaching-	Classroom Teaching (Offline/Online), learning from online resources
Learning	
Methodology	

Evalu	Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

Course Outcomes: Having completed this course, the learner will be able to

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25)

Syllabus with effect from the Academic Year 2022-2023

- Know about the principle of working of optical fiber based systems. 1.
- 2. Get an idea about the various types of sources and detectors that can be used for optical fiber communication systems
- 3. Have an understanding about the working of optical fiber based communication systems.

Sugges	Suggested References:	
Sr. No.	References	
1.	Optical Fiber Communication- Principle and practice John M. Senior (2010), Prentice Hall of India.	
2.	Fiber optic communication and other applications Henry Zanger & Cynthia Zanger (1991), Maxwell Macmillan International Edition.	
3.	An Introduction to Optical Fibers Allen H. Cherin (1983), Mcgrow Hill International Edition.	
4.	Optical Fiber Communication Gerd Keiser (2017), Mcgrow Hill International Edition.	

\sim	1'	1 1	· C · 1 1 1 1	C	4 1
l In	-line resources t	A ha nead :	IT OVOLIONIA	oc rataranca	matarial
\ /!!					

On-line Resources

- 1.https://www.youtube.com/watch?v=WA0eHT3sfS0
- 2.https://nptel.ac.in/content/storage2/courses/117101054/downloads/lect9.pdf
- 3.https://nptel.ac.in/content/storage2/courses/113106062/Lec18.pdf
- 4.https://nptel.ac.in/content/storage2/courses/117101054/downloads/lect19.1.pdf

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

> Master of Science (Electronics) M.Sc. (Electronics) Semester IV

Course Code	PS04CELE53	Title of the Course	Sensor Technology
Total Credits of the Course	4	Hours per Week	3+1=4 Hours

Course	1. In depth study of science, technology and applications of Sensors.	
Objectives:	2. To develop an understanding of the classification and the	
	performance parameters of Sensors to facilitate the learner to	
	compare various sensors and select the most suitable sensor for the	
	need of the challenge.	
	3. To make the learners apply sensors applications in various fields	
	such as modern home, agriculture, industries, automobile,	
	transportation and defence.	

Course	Course Content		
Unit	Description	Weightage* (%)	
1.	Importance of Sensors, Introduction, Classification of Sensors, Sensor Parameters- Static and Dynamic, Errors in Measurements, Standards of Measurement, Integrated Sensors, Bus-organized sensing system.	25	
2.	Chemical Sensors: Characteristics, Specific Difficulties, Classification, Metal Oxide Semiconductor Gas Sensors, Chem FET, Electronic Nose, Electrochemical sensors, Lambda Probe, Pellistor, Fiber Optic Sensors (FOSs), Basic Concepts, Architecture of Fiber Optics Sensors (FOSs), Applications- Temperature, Liquid Level, Fluid Flow and Microbend Sensor, FOS in Medical and Military Applications.	25	
3.	Resonating Quartz Sensors, Piezoelectricity, Resonance and Quartz properties, Applications, QCM, Surface Acoustic Wave Sensors (SAW), SAW Sensors Operation- Chemical and Physical Sensors,	25	

Vallabh Vidyanagar, Gujarat

	Magnetic Field Sensors, Mechanical Sensors, Optical and radiation (Infrared/thermal) sensors, Ultrasonic sensors.	
4.	Biosensors - Introduction and Definition, Receptor: Molecular Recognition Element Immobilization methods, Silicon Micromachining - Introduction, IC Technologies and Micromachining methods, Silicon Sensors, Micro Electro Mechanical Sensors (MEMs), Smart Sensors, Wireless sensors network.	25

Teaching-Learning	Classroom Teaching (Offline/Online), learning from online
Methodology	resources

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Course Outcomes: Having completed this course, the learnerwill be able to		
1.	Get a complete idea about the modern generation of sensors for various applications	
2.	Avail the basic understanding for the comparative analysis of various sensors and systems.	
3.	Attain knowledge about the types of sensors which are very important today but the learner did not come across so far.	

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Suggested References:		
Sr. No.	References	
1.	Measurement and Instrumentation System W.Bolton (1998), Butterworth-Heinemann Publisher	
2.	Sensors for Domestic Application Alnaldo D'Amico and Giorgio Sbeveglieri (1995), World Scientific Co. (USA)	
3.	Sensors and Transducers (2 nd ed.) D. Patranabis (2003), Prentice/Hall of India Private Limited, New Delhi (INDIA)	
4.	Advance in Biosensor.(1sr. ed.) Bansi Malhotra Anthony Turne (Ed.) (2003) ,Jai Press Ltd., New Delhi (INDIA)	
5.	Biosensors - An Introduction Brian Eggins (1996), Wiley Teuiner Publications	
6.	Biosensors Principles & Applications Loic J. Blum and Pierre R. Coulet (Ed.) (1991), Marcel Dekker, Inc. (USA)	
7.	Handbook of Modern Sensors Physics, Designs and Applications Fraden, Jacob (2016), Springer.	
8	Sensor Technology Handbook Jon S. Wilson (2005), Elsevier /Newnes (London)	

On-line resources to be used if available as reference material

On-line Resources

- 1. https://link.springer.com/boo/10.1007/978-1-4302-6014-1
- 2.https://www.figarosensor.com/technicalinfo/principle/catalytic-type.html

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Master of Science (Electronics)

M.Sc. (Electronics) Semester IV

Course Code	PS04EELE51	Title of the Course	Design of VLSI Systems
Total Credits of the Course	4	Hours per Week	3+1=4 Hours

Course Objective	1. To Study digital system and VLSI design
	methodology.
	2. Design for testability and design verification.
	3. Learn methods to improve digital VLSI systems
	performance: reliability, manufacturability, cost,
	power, security, etc.
	4. Learn hardware design language (HDL).
	Implementing the HDL code on FPGA and CPLD

Course	Content	
UNIT	Description	Weightage*
		(%)
1	An overview of VLSI, VLSI Design Methodology,	
	Design Flow, VLSI Road Map, Logic Design with	
	MOSFET, Elements of Physical Design. System level	
	physical design: Large scale physical design,	25
	Interconnectivity, Delay model, Cross talk, Floor	
	Planning & Routing, I/O Circuits, Power Distribution	
	& Consumption, Clock Distribution	
2	Reliability & testing of VLSI Circuits: Introduction	
	to Testing of VLSI Circuits, Fault Models, Gate level	
	testing, Boundary Scan testing, Ad-hoc Testing, Test	25
	Generation Methods, D-Algorithm, Introduction to	
	ATPG.	

Vallabh Vidyanagar, Gujarat

3	System Specification using HDL, Introduction to	
	HDL, VHDL modeling concept, Scalar data type &	25
	operations in VHDL, Sequential statements,	23
	Composite data type, Basic Modeling Constructs.	
4	Subprogram in VHDL, Packages & USE Clauses,	
	VHDL standard package-1164, Alias, Constants,	
	Components and configurations, Files and	
	Input/Output. Designing with Programmable Logic	25
	Devices, Digital Design with State Machine chart,	
	Designing with FPGAs & CPLDs, VHDL model for	
	memory buses.	

Teaching- Tradit	ional Classroom teaching with use of Multimedia
Learning facilit	y in the classroom.
Methodology Use of	Computer Tool for live demonstration and
proble	m / design based approach.

Evaluation Pattern			
Sr. No	Details of Evaluation	Weightage	
1	Internal Written / Practical Examination (As per	15%	
	CBCS R.6.8.3)		
2	Internal Continuous Assessment in the form of	15%	
	Practical, Viva Voce, Quizzes, Seminars,		
	Assignments, Attendance (as per CBCS R6.8.3)		
3	University Examination	70%	

Vallabh Vidyanagar, Gujarat

Cou	Course Outcome. Having completed this course, the learner will be able to		
1	Design complex digital systems using VLSI design methodology.		
2	Design a digital system using given specifications and design		
	constraints.		
3	Plan and choose digital system testing strategy		
4	Plan digital system verification strategy		

Sugg	Suggested References:		
Sr.	References		
No.			
1	Introduction to VLSI Circuits & Systems		
	John P. Uyemura, John Willey & sons (Asia) Pvt Ltd. NY,(USA)		
2	The Designer guide to VHDL		
	Peter J Ashenden, Harcourt India Pvt. Ltd., N.Delhi (INDIA)		
3	Digital logic design principles		
	Norman Balabanian & Bradely Carlson,		
	John Willey & Sons Pvt. Ltd NY,(USA)		
4	Modern VLSI Design: System on Silicon		
	Wayne Wolf, Pearson education - Prentice Hall, New Delhi (INDIA)		
5	Principles of CMOS VLSI Design: A system perspective		
	Neil H.E., Weste and Kamran Eshraghian		
	Pearson Education -Prentice Hall New Delhi (INDIA)		
6	Digital Integrated Circuits: A Design Perspective		
	Jan M. Rabeay, Anantha Chandrakasan and Borivoje Nikolic		
	Prentice Hall of India (EEE), New Delhi (INDIA)		
7	Digital Systems Design using VHDL		
	Charles H. Roth Jr., Thomson Brooks/ Cole (USA)		

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

On-line resources to be used if available as reference material

On line resources.

1. Video lectures on VLSI Design by NPTEL

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Master of Science (Electronics)

M.Sc. (Electronics) Semester IV

Course Code	PS04EELE52	Title of the Course	Computer Based Industrial Control
Total Credits of the Course	4	Hours per Week	3+1=4 Hours

Course Objective	1. To Focus on various Control schemes used in the
	Industrial Environment
	2. Monitoring, controlling various parameters in
	the field via Computerized Network.

Course	Content	
UNIT	Description	Weightage*
		(%)
1	Expectations from Automation, Current trends in	
	Computer Control of Process Plants, Process	
	Definition, Feedback Control, Basic Principles of	
	Single controller loop, Two-position Control, Multi-	
	position control, Proportional Integral Derivative	25
	Control, Multi-variable Control, Feed Forward	
	Control, Introduction of Building Blocks of	
	Automation System, Processing System,	
	Multimicroprocessor Systems.	

Vallabh Vidyanagar, Gujarat

2	Local Area Networks, Analog and digital I/O Modules, Supervisory control and Data Acquisition	
	Systems, Remote Terminal Unit, Direct Digital	
	Control-Structure and Software. Distributed Digital	25
	Control, History, Functional Requirements of	
	(Distributed) Process Control System, System	
	Architecture, DCS, Final Control Element-	
	Pneumatic, Hydraulic; Electric Actuation.	
3	Introduction to Intelligent Controllers, Model Based	
	Controllers, Predictive control, Artificial Intelligent	
	Based Systems, Expert Controller, Fuzzy Logic	2.5
	System. Fuzzy Controller. Fuzzy Logic Tools,	25
	Conventional Control Systems, Fuzzy Logic Control	
	Systems, Fuzzy Logic Control vs. PID Control.	
4	Examples of Industrial Applications of FLC,	
	Stability, Neural Controllers, VLSI Implementation	
	of Neural Network. Fuzzy Neural Networks-Fuzzy	25
	Multilayer Perception, Fuzzy competitive Learning,	23
	Fuzzy Art, Fuzzy Min-Max Networks, Fuzzy	
	Neurons, Fuzzy Neural Control Systems.	

Teaching-	Traditional Classroom teaching with use of Multimedia
Learning	facility in the classroom, Use of Computer Tool for
Methodology	live demonstration and problem / design based
	approach.

Vallabh Vidyanagar, Gujarat

Evaluation Pattern		
Sr. No	Details of Evaluation	Weightage
1	Internal Written / Practical Examination (As per	15%
	CBCS R.6.8.3)	
2	Internal Continuous Assessment in the form of	15%
	Practical, Viva Voce, Quizzes, Seminars,	
	Assignments, Attendance (as per CBCS R6.8.3)	
3	University Examination	70%

Cou	Course Outcome. Having completed this course, the learner will be able to		
1.	Have knowledge of various aspects of Industrial Control schemes.		
	Managed by PLC, DCS, SCADA etc.		
2.	Get understanding of control applications used in Industry.		
3.	Develop application models based on Fuzzy logic.		

Sugg	Suggested References:		
Sr.	References		
No.			
1.	Computer based Industrial Control		
	Krishna Kant, Prentice Hall of India, New Delhi (INDIA)		
2.	Introduction to Applied Fuzzy Electronics		
	Ahmad M. Ibrahim, Prentice Hall of India, New Delhi (INDIA)		
3.	Industrial Automation : Hands On		
	Frank Lamp, Kindle Edition		

On-line resources to be used if available as reference material
On line resources.
1. On Line Video Lectures on Industrial Automation and control - NPTEL

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Master of Science (Electronics)

M.Sc.(Electronics) Semester IV

Course Code	PS04EELE53	Title of the Course	Principles of Nano-Electronics
Total Credits of the Course	4	Hours per Week	3+1=4 Hours

Course Objective	1. To introduce the students about nanoelectronics
	and nanodevices,
	2. To identify quantum mechanics behind
	nanoelectronics.
	3. To describe the principle and the operation of
	nanoelectronic devices.

Course	Course Content		
UNIT	Description	Weightage*	
1	Dimensionality and ideal semiconductor nanostructure, density of states, Quantum size effects and density of states for two dimensional systems, Superlattices, Electron states in quantum wells, wires and dots, Gate oxide tunneling in MOSFETs, Fowler-Nordheim tunneling.	25	
2	Double barrier tunneling and resonant tunneling diode, Resonant tunneling transistor, Coulomb blockade in a nano capacitor, Tunnel junction and its excitation by current source, Coulomb blockade in a quantum dot circuit, Coulomb staircase.	25	

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

3	Semiconductor quantum hetero and nano structures, Modulation doping, Energy band transitions in quantum wells, quantum wires and nano wires, Quantum dots and nano particles, Ballistic transport, Transport model, Quantum resistance and conductance.	25
4	Carbon nano tubes and carbon nano wires, Nano scale wire radius, Transport of spin and Spintronics, Single electron transistor, Carbon nano tube transistor, Nano tube hetero junction, Nano tube field effect transistor, Graphene in nano electronic systems.	25

Teaching-	Traditional Classroom teaching with use of Multimedia
Learning	facility in the classroom.
Methodology	Use of Computer Tool for live demonstration and
	problem / design based approach.

Evaluation Pattern		
Sr. No	Details of Evaluation	Weightage
1	Internal Written / Practical Examination (As per	15%
	CBCS R.6.8.3)	
2	Internal Continuous Assessment in the form of	15%
	Practical, Viva Voce, Quizzes, Seminars,	
	Assignments, Attendance (as per CBCS R6.8.3)	
3	University Examination	70%

Course Outcome. Having completed this course, the learner will be able to

Vallabh Vidyanagar, Gujarat

1	Learn the fundamental science and quantum mechanics behind
	nanoelectronics
2	Differentiate between microelectronics and nanoelectronics

Sugg	gested References:
Sr.	References
No.	
1	Fundamentals of Nanoelectronics
	George W. Hanson, Pearson Education, New Delhi, INDIA
2	Nanoelectronics
	A.S. Bhatia, NuTech Books, New Delhi, INDIA
3	Low Dimensional Semiconductors: Materials, Physics, Technology &
	Devices
	M.J.Kelly, Clarendon Press Oxford, N.Y., USA
4	Nanoelectronics: Principles and Devices
	Mircea Dragoman and Daniele, Artech House Publication, N.Y. USA
5	Semiconductor Heterojunctions and Nanostructures
	Omar Manasreh, McGraw Hill, N.Y., USA
6	Quantum Wells, Wires and Dots
	P.Harrison, Wiley, N.Y., USA
7	Silicon Nanoelectronics
	Shunri Oda and David Ferry, Taylor & Francis, N.Y., USA

On-line resources to be used if available as reference material
On line resources.
1. www.slideshare.net/tabirsir/nanoelectronics-pptfinal
2. ww.melbhattan.com/nanoelectronics
3. web.stanford.edu/~hspwong/EE 218 - Section 0

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Master of Science (Electronics)

M.Sc.(Electronics) Semester IV

Course Code	PS04EELE54	Title of the Course	Advanced Digital Systems Design with HDL
Total Credits of the Course	4	Hours per Week	3+1=4 Hours

Course Objective	1. To understand sequential and combinational logic
	design techniques
	2. To introduce HDL
	3. To learn various digital circuits using HDL
	4. To learn PLD, CPLD, FPGA and their applications

Course Content					
UNIT	Description	Weightage*			
		%			
1	Introduction: Introduction to Computer-aided				
	design tools for digital systems. Hardware				
	description languages; introduction to VHDL,				
	data objects, classes and data types, Operators,	25			
	Overloading, logical operators. Types of delays				
	Entity and Architecture declaration. Introduction				
	to behavioral, dataflow and structural models.				

Vallabh Vidyanagar, Gujarat

2	VIIDI Ctotomonto . A!	
2	VHDL Statements : Assignment statements,	
	sequential statements and process, conditional	
	statements, case statement Array and loops,	
	resolution functions, Packages and Libraries,	25
	concurrent statements. Subprograms: Application	23
	of Functions and Procedures, Structural	
	Modelling, component declaration, structural	
	layout and generics.	
3	Sequential and Combinational Circuit Design:	
	VHDL Models and Simulation of combinational	
	circuits such as Multiplexers, Demultiplexers,	
	encoders, decoders, code converters,	
	comparators, implementation of Boolean	25
	functions etc. Sequential Circuits Design: VHDL	
	Models and Simulation of Sequential Circuits	
	Shift Registers, Counters etc.	
4	Prototyping and case studies: Design with CPLDs	
	and FPGAs: Programmable logic devices: ROM,	
	PLAs, PALs, GAL, PEEL, CPLDs and FPGA.	
	Design implementation using CPLDs and FPGAs	
	Design of Microcomputer: Basic components of a	25
		4 J
	computer, specifications, architecture of a simple	
	microcomputer system, implementation of a	
	simple microcomputer system using VHDL	
	Reference	

Teaching-	Traditional Classroom teaching with use of Multimedia
Learning	facility in the classroom.
Methodology	Use of Computer Tool for live demonstration and
	problem / design based approach.

Vallabh Vidyanagar, Gujarat

Evaluation Pattern					
Sr. No	o Details of Evaluation				
1	Internal Written / Practical Examination (As per	15%			
	CBCS R.6.8.3)				
2	Internal Continuous Assessment in the form of	15%			
	Practical, Viva Voce, Quizzes, Seminars,				
	Assignments, Attendance (as per CBCS R6.8.3)				
3	University Examination	70%			

Cou	Course Outcome. Having completed this course, the learner will be able to				
1	Design combinational & sequential circuits using VHDL.				
2	Integrate combinational & sequential circuits to design a micro				
	architecture				
3	Set environment, libraries, synthesis constraints for synthesis				
4	Create test benches, run simulations and analyze/debug results to				
	meet specifications				

Sugg	Suggested References:				
Sr.	References				
No.					
1	Digital System Design using VHDL				
	Charles. H.Roth; PWS (1998).				
2	VHDL-Analysis & Modelling of Digital Systems				
	Navabi Z; McGraw Hill.				
3	VHDL				
	Douglas L. Perry, Mc Graw Hill Publications				
4	VHDL: Analysis and Modeling of Digital Systems				
	Zainalabedin Navabi, McGraw-Hill				
5	Logic and Computer Design Fundamentals				
	M. Morris Mano				

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

()n_	line	resources	to he	used if	available	is reference	material
•	<i>,</i> , , , –	11110	icsoulces		0.850.11	a v a i i i i i i i	19 TELETERICE	шацынан

On line resources.

- 1 .web.itu.edu.tr/~ateserd/VHDL.pdf
- 2. www.ics.uci.edu/~jmoorkan/vhdlref/Synario VHDL..
- $3.\ at las. physics. arizona. edu/.../downloads/vhdl/VHDL_Lang.pdf$

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Master of Science (Electronics)

M.Sc.(Electronics) Semester IV

Course Code	PS04EELE55	Title of the Course	CMOS Technology & VLSI Design
Total Credits of the Course	4	Hours per Week	3+1=4 Hours

Course Objective	1. To learn the basic CMOS Circuits.
	2. To acquire knowledge of CMOS Process
	Technology.
	3. To impart in-depth knowledge about analog and
	digital CMOS circuits.

UNIT	Description	Weightage*
		(%)
1	Introduction CMOS Logic: Gates Suing CMOS.,	
	Pass Transistors and Transmission Gates,	
	Tristates, Multiplexers, Latches and Flip-Flops,	
	CMOS Layout: Inverter Cross section, Layout	
	Design rules, Gate Layout, MOS Transistor	
	Theory: Ideal I-V, C-V Characteristics, Various	2.5
	MOS Capacitance Models, MOS Gate	25
	Capacitance Model, Channel Length Modulation,	
	Body Effect, Sub threshold Conduction, Junction	
	Leakage, Tunneling, Temp. and Geometry	
	Dependence. DC Transfer characteristics: CMOS	
	Ratioed Inverter Transfer Function.	

Vallabh Vidyanagar, Gujarat

2	CMOS Processing Technology CMOS	
	Technologies: Background, Wafer Formation,	
	Photolithography, Well and Channel Formation,	
	Silicon Dioxide (SiO2), Isolation, Gate Oxide,	
	Gate and Source/Drain Formation, Contacts and	
	Metallization, Passivation, Metrology. Layout	2.5
	Design Rules: Design Rules Background, Scribe	25
	Line and Other Structures, MOSIS Scalable	
	CMOS Design Rules, Micron Design Rules.	
	CMOS Process Enhancements: Transistors,	
	Interconnect, Circuit Elements, Beyond	
	Conventional CMOS.	
3	Circuit Characterization and Performance	
	Estimation Delay Estimation: RC Delay Models,	
	Linear Delay Model, Logical Effort, Parasitic	
	Delay. Logical Effort and Transistor Sizing:	
	Delay in a Logic Gate, Delay in Multistage Logic	25
	Networks, choosing the Best Number of Stages.	
	Power Dissipation: Static Dissipation, Dynamic	
	Dissipation, Low-Power Design. Interconnect:	
	Resistance, Capacitance, Delay, and Crosstalk.	
4	Design Margin: Supply Voltage, Temperature,	
	Process Variation, Design Corners. Reliability,	
	Scaling, Analog Circuits: MOS Small-signal	25
	Model, Common Source Amplifier, The CMOS	23
	Inverter as an Amplifier, Current Mirrors,	
	Differential Pairs and its applications.	

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Teaching-	Traditional Classroom teaching with use of Multimedia
Learning	facility in the classroom.
Methodology	Use of Computer Tool for live demonstration and
	problem / design based approach.

Evaluation Pattern		
Sr. No	Details of Evoaluation	Weightage.*
1	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2	Internal Continuous Assessment in the form of Practical, Viva Voce, Quizzes, Seminars, Assignments, Attendance (as per CBCS R6.8.3)	15%
3	University Examination	70%

Cour	Course Outcome. Having completed this course, the learner will be able to	
1	Acquire the knowledge about various CMOS fabrication process and	
	its modelling.	
2	Design and implement various structures for low power applications.	
3	Design various CMOS dynamic logic circuits.	
4	Design techniques of low voltage and low power CMOS circuits for	
	various applications.	

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023

Sugg	Suggested References:	
Sr.	References	
No.		
1	CMOS VLSI Design	
	Neil H.E. Weste, David Harris, Ayan Banerjee: Third Edition,	
	Pearson Education.	
2	Principle of CMOS VLSI Design	
	Neil H.E. Weste, Kamran Eshraghian, Pearson Education.	
3	Chip Design for Submicron VLSI	
	J. P. Uyemura, Cengage Learning.	
4	CMOS Analog Circuit Design	
	Philip E. Allen and Douglas R Holberg, Oxford.	
5	Introduction to VLSI systems	
	Carver Mead and Lynn Conway, BS Publication	
6	Introduction to VLSI Circuits and Systems	
	J. P. Uyemura, Wiley.	

On-line resources to be used if available as reference material	
On line resources.	
1. webpages.eng.wayne.edu/cadence/ECE6570/doc/lect1_1.pdf	
2. www.egr.msu.edu/classes/ece410/mason/files/Ch3-5.pdf	

3. ON LINE Video lectures - NPTEL

