(Under Choice Based Credit Scheme)

Structure with Effect from 2022-23

M.Sc. (Industrial Chemistry) Semester-3

Programme Outcome (PO) - For MSc Chemistry Programme	 Master of Science program provides extended theoretical and practical knowledge of different science subjects. Master of Science programme at Sardar Patel University is designed keeping the overall back ground preparation in mind for the student to either seek a job or to become an entrepreneur. The students, after completion of Bachelor of Science can select the master's programme in the subject they have had at the final year or in a related discipline (depending upon eligibility criteria prescribed by university). Programme outcomes: At the end of the program, the students will be able to Have a deep understanding of both the theoretical and practical concepts in the respective subject. Understand laboratory processes and use scientific equipments and work independently. Develop research temperament as a consequence of their theory and practical learning. Communicate scientific information in oral and written form. Understand the issues related to nature and environmental contexts and think rationally for sustainable development. The students are able to handle unexpected situations by critically analyzing the problem.
Programme Specific Outcome (PSO) - For MSc Chemistry Semester - III	 Students will have a firm foundation in the fundamentals and application of current chemical and scientific theories including those in Analytical Inorganic Chemistry, Organic Chemistry, Physical Chemistry, Chemistry and Industrial polymer Chemistry. After completing M.Sc. chemistry program, students will be able to: Demonstrate and apply the fundamental knowledge of the basic principles in various fields of Chemistry. Apply knowledge to build up small scale industry for developing endogenous product. Collaborate effectively on team-oriented projects in the field of chemistry or other related fields. Communicate scientific information in a clear and concise manner both orally and in writing. Inculcate logical thinking to address a problem and become result oriented with a positive attitude. Enhance the scientific temperament among the students so as to develop a research culture and implementation of the policies to tackle the burning issues at global and local level. Apply the knowledge to develop the sustainable and eco-friendly technology. Take up global level research opportunities to pursue Ph.D programme targeted approach and specific competitive exams conducted by service commission Accept enormous job opportunities at all level of chemical industries, pharmaceutical industries and placements in R & D.

Course	Course	Name of Course	Type of	T/P	Credit	Hours	Exam	Com	ponent of M	larks
Туре	Code		Course			per	Duration	Internal	External	Total
						Week	in hrs	Total/	Total/	Total
								Passing	Passing	Passing
Core	PS03CICH51	New Separation	EM & EN	Т	4	4	3	30/12	70/28	100/40
Course		Techniques								
	PS03CICH52	Spectroscopy- I	EM & EN	Т	4	4	3	30/12	70/28	100/40
	PS03CICH53	Green Chemistry	EM & EN	Т	4	4	3	30/12	70/28	100/40
	PS03CICH54	Industrial Organic	EM & SD	Р	4	8	3	30/12	70/28	100/40
		Chemistry- I								
	PS03CICH55	Chemical Process	EM & SD	Р	4	8	3	30/12	70/28	100/40
		Industries								
	PS03CICH56	Comprehensive	-	Т	1	1	1	-	50/20	20/20
		Viva-Voce								
Any one	PS03EICH51	Processing of oils &	EM & EN	Т	4	4	3	30/12	70/28	100/40
Elective		Fats to utility								
		Products								
	PS03EICH52	Chemical Analysis	EM & EN	Т	4	4	3	30/12	70/28	100/40
		in Agro Food and								
		Pharmaceutical								
		Total			25					650

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023 Master of Science, Industrial Chemistry **M.Sc. Industrial Chemistry, Semester - III**

Course Code	PS03CICH51	Title of the Course	New Seperation Techniques
Total Credits of the Course	4	Hours Per Week	4

Course	1.	The objective is to provide the concept of various unit operations like		
Objectives:		pressure swing adsorption, short parth distiration.		
	2.	It is aimed to get the idea about the latest separation techniques that can		
		be used to separate the mixture.		
	3.	It is aimed to study about the different memberance separation		
		techniques like Reverse osmosis, per vaporization etc.		

Course	Course Content				
Unit	Description	Weightage* (%)			
1.	 (a) Short path Distillation:- Concept & working of short path Distillation Unit (SPDU), Difference between short path Distillation & molecular distillation, applications of SPDU, Economics of short path distillation. (b) Pressure Swing Distillation:- Concept & Working, Advantage & Disadvantages of PSD over azeotropic and Extractive Distillation, Applications 	25%			
2.	 (a) Pressure Swing Adsorption:- Concept & Working, Advantages & Disadvantages of PSA over cryogenic distillation, four step PSA, six step PSA, Purification of hydrogen, oxygen, Nitrogen & other commercial applications of PSA. (b) Reactive & Catalytic Distillations- Concept & and History, Advantage & Disadvantages, Various methods of applications, Manufacturing of MTBE, Manufacturing of ETBE and other commercial applications, BALE & KATMAX packing, etc. 	25%			
3.	Super Critical Extraction- Working Principle, Advantage & Disadvantages of supercritical solvents over conventional liquid solvents, Advantage & Disadvantages of supercritical extraction over liquid- liquid extraction, Decaffeination, ROSE process, extraction of aromatic from spice and other commercial applications of supercritical extraction, Applications under research	25%			
4.	 Membrane Separation Techniques:- a. Reverse Osmosis (R.O.) Concept of Osmosis & Reverse Osmosis, Different types of Membrane modules and membrane material used for R.O., Advantages & Disadvantages, and Commercial applications of R.O. b. Ultra filtration:- 	25%			

Concept & working principle, Commercial applications.	
c. Per vaporization:-	
Working principle, Advantages & Disadvantages, Production of	
absolute alcohol and other commercial applications.	
d. Membrane Reactor-	
Concept & working, Various modules of membrane used for	
membrane reactor, Advantages & Disadvantages, applications under	
research.	

Teachi	ng	1.	To approach the effective teaching methodolo	gy. It comprises	
Learni	Learning discussion, group learning, problem solwing, focusing on the s				
Metho	dology:-		confidence among the students, team work as we	ll as encouraging	
			the students to critical thinking & searching.		
		2.	The students often get an opportunity to ask	questions in the	
			middle of lecture. It should be maintained as a dis	cussion pattern as	
			well as self learning approach.		
Evalua	ation Pattern				
Sr.	Details of the Evaluation Weightage*				
No.				(%)	
1.	Internal Written/ Practical Examination (As per CBCS R 6.8.3) 15%			15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-			15%	
	Voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS				
	R. 6.8.3)				
3.	University	Exam	ination	70%	

Course	Course Outcomes: having completed this course, the learner will be able to				
1.	Understand advanced mass transfer techniques such as Pressure Swing distillation,				
	Reactive & Catalytic distillation, super critical Extraction etc.				
2.	Understand Membrane Separation Techniques that can be used in different chemical				
	industries such as milk industry, food industry.				
n					

Sr.	References
No.	
1.	"Membrane Separation Processes" by Kaushik Nath, PHI pvt.Ltd., 2008
2.	"Introduction to Process Engineering & Design" by S.B.Thakore & B.I.Bhatt, Tata
	McGraw-Hill Ltd.,2007
3.	Perry Chemical Engineers Handbook' 7thEdition by R.H.Perry and D.Green.
4.	Ullman's Encyclopedia of Industrial Chemistry.
5.	"Encyclopedia of Chemical Engineering " by Kirk & Othmer.
6.	"Natural Extracts using supercritical carbon dioxide" M.Mukhopadhyay

Online- Resources

On-line Resources:- From time to time are many online resources, including websites, databases, e-books, bibliographies and platforms that offer educational videos, lectures on a range of topics can be suggested or displayed to he students.

Major websites used for chemical education such as:- Swayam, e-pg Pathshala, Swayam Prabha, NDLI, E-Sodh Sindhu, NPTEL, Virtual Labs, Process Oriented Guided Inquiry Learning (POGIL) etc.

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023 Master of Sciene, Industrial Chemistry M.Sc. Industrial Chemistry, Semester - III

Course Code	PS03CICH52	Title of the Course	Spectroscopy- I
Total Credits of the	4	Hours Per Week	4
Course			

Course	1.	To impart the knowledge of UV, IR, Atomic, Microwave, Molecular
Objectives:		Spectroscopy & their applications.
-	2.	Be able to describe what happens to a compound when it absorbs
		infrared radition & ultraviolet radiation.
	3.	Be able to use of a chart of functional group IR absorptions & vissible
		light absorptions. Also able to identify the struttre of compound.
	4.	Be able to use of experimental technique that measures the relative
		energies of electronics in atoms & molecules.

Course	Course Content				
Unit	Description	Weightage* (%)			
1.	Atomic Spectroscopy Energies of atomic orbitals, vector representation of momenta, & vector coupling, spectra of hydrogen atom & alkali metal atoms. Molecular Spectroscopy Energy levels, molecular obritals, virbonic transitons, vibrational progressions & geometry of the excited state, Frank- condon principle, electronic spectra of polyatomic molecules. Emission spectra-change transfer spectra.	25%			
2.	Microwave Spectroscopy Basic concepts, rotation spectra of simple inorganic compounds, classification of molecules, rigid rotor model, effect of isotopic substitution on transition frequencies & intensities non-rigid rotor stark effect nuclear & electron spin interaction & effect of external field. Photoelectron & Photo acoustic spectroscopy. Introduction, principle, instrumentation & applications of following techniques photo acoustic spectroscopy (PAS), photo electron spectroscopy (PES), Koopman's theorm, ESCA & chemical informations obtained from it. Auger electron spectroscopy (AES)	25%			
3.	UV Spectroscopy:- Introduction, origion of UV band specturm, types of electronic transition, selection Rules, presentation of UV spectra, solvents	25%			

	effects on UV absorption, chromophores & auxochrome, effect of conjugation, conformation & geometry on UV absorption of polymes Wood Word Fieser rules for dienes, axial haloketone rule, ketones, unsaturated aldehyde, the UV spectra of benzenoids, polynuclear aromatic hydrocarbon & heterocycles.	
4.	IR Spectroscopy:- Introduction principles of IR spectroscopy sample, handling, various modes of virbation, presentation of spectra, Functional group & finger print region, combination & overtones, Fermi resonance, bond properties & absorption trends, Factors influencing vibration-frequencies, interpretation of IR Spectra. Characteristic Vibrational frequencies of common functional groups (alkanes, alkenes, alkynes, ethers, aromatic compounds, alcohols, phenols & amines) study of vibrational frequencies of carbonyl compounds ketones, aldehyeles, estres, amides & acids	25%

Teachi	ching - In the course of spectroscopy aims to make the studer			
Learning		knowledge of spectroscopy.		
Methodology:		have the knowledge about recent technologies rel point of view.	This program is desinged to encourage the learning strategies to have the knowledge about recent technologies related to industrial point of view.A variety of approach to teaching methods like seminars, lectures, power point presentation etc.	
Evalua	tion Patter			
Sr.		Details of the Evaluation	Weightage*	
No.			(%)	
1.	Internal W	ritten/ Practical Examination (As per CBCS R 6.8.3)	15%	
2.	Internal C	ontinuous Assessment in the form of Practical, Viva-	15%	
	Voce, Quiz	zzes, Seminars, Assignments, Attendance (As per CBCS		
	R. 6.8.3)			
3.	University	Examination	70%	

Course Outcomes: Understand the basic concept of spectroscopy. 1. Will be able to interpret various types of spectroscopy like UV, IR, atomic, molecular, microwave, photoelectron & photoacoustic spectroscopy etc. 2. Recognize spectroscopy in microwave, Rotational spectra of rigid diatomic molecules, sleection Rule, interaction of spectral lines. 3. Study of vibrating diatomic molecule, energy levels of a diatomic molecule, simple harmonic & anharmonic oscillator. 4. Understand principles & Applications of Mossbauer spectroscopy.

Suggested References

Sr.	References
No.	
1.	Modern spectroscopy: J.M. Hollas: Johnwilley
2.	Introduction of Molecular Spectroscopy G.M. barrow; McGraw Hill.
3.	Basic Principles of Spectroscopy: Rchang Mcgraw Hill.
4.	Theory & Application of UV Spectroscopy H.H. Jaffe & M. Orchin's BH Oxford.

5.	Introduction to Photoelectron Spectroscopy P.K. Ghosh, John Wiley.
6.	Fundamentals of Molecular Spectroscopy C.N. Banwell & E.M. Mc.Cash; McGraw
	Hill.
7.	Mo0lecular Spectroscopy by I.N. Levine, Willey Interscience.
8.	Organic Spectroscopy William kemp, John Wiley & Sons.
9.	Spectroscopy of Organic Compound, P.S. Kalsi Wiley Edstem, New Delhi.
10.	Absorption Speatroscopy of Organic Molecules (D. Van Nostrand), V.M. Parikh
11.	Organic Spectroscopy- Principles & Application Jag Mohan, 2nd Edition (Narosa
	Publishing House.

Online- Resources

On-line Resources:- From time to time are many online resources, including websites, databases, e-books, bibliographies and platforms that offer educational videos, lectures on a range of topics can be suggested or displayed to the students.

range of topics can be suggested or displayed tot he students. **Major websites used for chemical education such as:-** Swayam, e-pg Pathshala, Swayam Prabha, NDLI, E-Sodh Sindhu, NPTEL, Virtual Labs, Process Oriented Guided Inquiry Learning (POGIL) etc.

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023 Master of Sciene, Industrial Chemistry M.Sc. Industrial Chemistry, Semester - III

Course Code	PS03CICH53	Title of the Course	Green Chemistry
Total Credits of the	4	Hours Per Week	4
Course			

Course	To learn about the environmental status, public awareness in evolution
Objectives:	principles involved in green chemistry, bio-catalytic reactions, & its control
	measures, availability of green analytical methods.

Course	Course Content		
Unit	Description	Weightage* (%)	
1.	Introduction to Green Chemistry What is Green Chemistry? Need for Green Chemistry. Goals of Green Chemistry. Limitations/Obstacles in the pursuit of the goals of Green Chemistry.	25%	
2.	Principles of Green Chemistry and Designing a Chemical synthesis Twelve principles of Green Chemistry with their explanations and Designing a Green Synthesis using these principles; Prevention of Waste/byproducts; maximum incorporation of the materials used in the process into the final products (Atom Economy);Prevention/minimization of hazardous/toxic products; designing safer chemicals ;Energy requirements for synthesis Selection of appropriate solvent; Selection of starting materials; Use of protectings groups; Use of catalyst; Products Designed should be Biodegradable; Designing of manufacturing plants; Strengthening of analytical techniques.	25%	
3.	Green reagents and Green catalysts Green reagents: Dimethyl carbonate ;Polymer supported reagents like Polymer supported Peracids ; Polymer supported chromic acid ;Polymeric Thioanisolyl Resin; PNBS; Polymer cabodiimide ; Polystyrene Anhydride; Sulfonazide. Green catalysts: Acid catalysts; Oxidation Catalysts; Basic Catalyst; Polymer supported catalysts like Polystyrene-Aluminium chloride; Polymeric Super Acid catalysts; Polystryene -metalloporphyrins; Polymer supported photosensitizers ;Polymer supported phase transfer catalysts.	25%	
4.	 Examples of Green Synthesis/Reactions (a) Ultrasound assisted reactions: Esterification, substitution reactions, Alkylations, oxidation, reduction, coupling reaction, Cannizaro reaction, Strecker synthesis, Reformatsky reaction. (b) Microwave assisted reactions in water: Hofmann Elimination, Hydrolysis (of benzyl chloride, benzamide, n-phenyl 	25%	

benzamide, methylbenzoate to benzole acid), Oxidation (of
toluene, alcohols). Microwave assisted reactions in organic
solvents: Esterification, Fries rearrangement, Orthoester
Claisen Rearrangement, Diels Alder Reaction,
Decarboxylation.

Teaching	The presence of faculty members to provide advice academic advice &
Learning	academic guidance to the student in need within the six hours a week
Methodology:-	available to all students.

Evaluation Pattern		
Sr.	Details of the Evaluation	Weightage*
No.		(%)
1.	Internal Written/ Practical Examination (As per CBCS R 6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-	15%
	Voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS	
	R. 6.8.3)	
3.	University Examination	70%

Course	Course Outcomes:		
1.	To understand the environmental status & evolution.		
2.	To know about the pollution & its prevention measures.		
3.	To familiarise the green chemistry.		
4.	To learn about bio-crtalytic reaction.		
5.	To learn about ultrasound assisted relations, Microwave assisted reactions in water &		
	Microwave assisted reactions in organic solvents.		

Sr.	References
No.	
1.	V.K. Ahluwalia & M.R. Kidwai:- New Trends in Green chemistry, Anamalaya
	Publishers (2005)
2.	A.S. Matlack:- Introduction to Green Chemistry Marcel Deckkar (2001)
3.	P.T. Anastes & J.K. Warmer:- Oxford Green Chemistry Theory & Practical University
	Press (1998)
4.	M.C. Cann & M.E. Connely:- Read World Cases in Green Chemistry American
	Chemical Society, Washington (2000)
5.	M.A. Ryan & M. Tinnes and, Introduction to green Chemistry, American Chemical
	Society, Washington (2002)

Online- Resources

On-line Resources:- From time to time are many online resources, including websites, databases, e-books, bibliographies and platforms that offer educational videos, lectures on a range of topics can be suggested or displayed to the students.

Major websites used for chemical education such as:- Swayam, e-pg Pathshala, Swayam Prabha, NDLI, E-Sodh Sindhu, NPTEL, Virtual Labs, Process Oriented Guided Inquiry Learning (POGIL) etc.

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023 Master of Science, Industrial Chemistry M.Sc. Industrial Chemistry, Semester - III

Course Code	PS03CICH54 PS03CICH55	Title of the Course	Practical's
Total Credits of the Course	8	Hours Per Week	16

Course	1.	Describe how to design experiments, execute experiments and		
Objectives:		investigate and infer the the observations yielded.		
	2.	synthesis of organic compounds.		
	3.	Identifications and separation of organic mixture.		
	4.	The second part of the course covers the manufacturing technology of		
		soap and detergent.		
	5.	It includes the topic related to the role of various parameters in the		
		development of a particular chemical process.		

Course Code	PS03CICH54	Title of the Course	Industrial Organic Chemistry- I
Total Credits of the Course	4	Hours Per Week	8

1.	Sepration and iidentification of Teritary Organic Mixture (5 Practicals)		
2.	Synthesis and Application of Name Reactions and Polymer		
	1. Connizzaro Reaction		
	2. Esterification Reaction		
	3. Preparation of Bakelite		
	4. Diel- Alder Reaction.		
	5. Kolbe- Schmidt Reaction		

Course Code	PS03CICH55	Title of the Course	Chemical Process Industries
Total Credits of the Course	4	Hours Per Week	8

1.	Preparation of Soap.
2.	Preparation of Caustic Soda.
3.	Determine the acid value of given oil sample
4.	Determination of Sodium carbonate in washing Soda.
5.	To produce biodisel from vegetable oil
6.	Preparation of liquid soap from glycerine
7.	To determine free fatty acids in crude and refine edible oil.
8.	Determination of Saponification value of an oil
9.	Determination of the critical Soln Temperature of phenol/ Water System.
10.	To determine the percentage of calcium carbonate in a given toothpaste.
11.	To determine the total phosphorous as P_2O_5 in detergent.

Teaching	Demonstration / Hands on training of various tyeps of analysis with or
Learning	without instruments.
Methodology:-	

Evalua	Evaluation Pattern			
Sr.	Details of the Evaluation	Weightage*		
No.		(%)		
1.	Internal Practical Examination (As per CBCS R. 6.8.3)	30%		
2.	University Examination	70%		

Course	Course Outcomes:		
1.	Understand technology of hydrogenation and saponification.		
2.	Basic information about edible and non edible oil.		
3.	Understand the detergent and soap manufactirng		
5.	The students acquired laboratory skills to handle the identificationa nd separation of		
	organic compound.		
6.	They have practical approach in synthesis of molecules based upon name reactions like		
	esterification, cannizzaro, Diel- Alder etc.		

Sr.	References
No.	
1.	Comprehensive practical organic chemistry Preparationa nd quantitative. Analsys. By
	V.K Ahluwalia and Renu Agarwal
2.	Comprehensive practical organic chemistry Qualitative Analysis By V.K. Ahluwalia
	and Renu Agarwal.
3.	Biodiesal Labs, Teacher Manual with Student Documets. By Loyola University of
	Chicago, Institute of Environmental Sustainiability Biodiesel program.
4.	Instrumental Analysis of Chemical Compound By Gurdeep R. Chatwal
5.	Vogel's Textbook of Quantitative chemical/ Analysis (5th Ed.) G.H. Jeffrey, J. bassette
	J. Mendhan, 1999.

Online- Resources

On-line Resources:- From time to time are many online resources, including websites, databases, e-books, bibliographies and platforms that offer educational videos, lectures on a range of topics can be suggested or displayed to the students.

Major websites used for chemical education such as:- Swayam, e-pg Pathshala, Swayam Prabha, NDLI, E-Sodh Sindhu, NPTEL, Virtual Labs, Process Oriented Guided Inquiry Learning (POGIL) etc.

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023 Master of Science, Industrial Chemistry M.Sc. Industrial Chemistry, Semester - III

Course Code	PS03CICH56	Title of the Course	Comprehensive Viva
Total Credits of the	1	Hours Per Week	1
Course			
Course 1	To assess the overall k	nowledge of the student	in the relevant subjects

Course	1.	To assess the overall knowledge of the student in the relevant subjects
Objectives		covered in core as well as elective courses.

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023 Master of Sciene, Industrial Chemistry

M.Sc. Industrial Chemistry, Semester - III

Course Code	PS03EICH51	Title of the Course	Processing of Oils & Fats to Utility
			Products
Total Credits of the Course	4	Hours Per Week	4

Course	1.	The fundamental concepts would reflect the latest understanding of the
Objectives:		field.
	2.	The learner are expected to know the basics of deterget, soaps, oil and fat industries.
	3.	The learners expected to be equipped with problem solving in allied industries.
	4.	Understanding new frontiers of knowledge in industrial chemistry for professional development.

Course	Course Content			
Unit	Description	Weightage*		
		(%)		
1.	Processes and plants employed for hydrogenation of oils, chemisry of	25%		
	hydrogenation of oils, catalyst for hydrogenation of oils, hydrogen			
	production for hydrogenation of oils.			
2.	Raw materials and technology of peanut butter and edible oil blends.	25%		
3.	Raw material for soap industries, plant & process employed in soap	25%		
	manufacturing.			
4.	Raw materials for detergents, plants & processes employed for	25%		
	detergents detergent additives.			

Teaching	To meet the effective teaching & the learning requirements, teaching-			
Learning	learning methodology comprises classrom teaching use of e-resources,			
Methodology:-	library books, IT-tools, encouraging students to participate in seminars/			
	workshops, presentation by students, assigning work based upon subject			
	requirement etc.			

Evalua	Evaluation Pattern				
Sr.	Details of the Evaluation	Weightage*			
No.		(%)			
1.	Internal Written/ Practical Examination (As per CBCS R 6.8.3)	15%			
2.	Internal Continuous Assessment in the form of Practical, Viva-	15%			
	Voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS				
	R. 6.8.3)				
3.	University Examination	70%			

Course	Outcomes:
1.	To build a basic knowledge of the process carried out in soap, detergent & oil
	industries.
2.	To review the practical importance & relevance of process take place in soap,
	detergent & oil industries.
3.	To study about the salient features of the processes.
4.	To build a bridge between theoratical & practical concept used in industry.

Sr.	References		
No.			
1.	Continuous processing of fats, M.K. Schwitzer, Chem Pub Comp., New York.		
2.	Baileys Industrial Oils & Fats products, Vol 1-5, John Wiley & Sons.		
3.	Manufacture of soaps, detergents & glycerine, edgar, Norwwod Limited		
4.	Treaties on fats, fatty acids & oleo chemicals, O.P. Narulla, Indl Constultants India		
	Ltd., New Delhi.		
5.	Soaps & Detergents, Parsuram K.S., Tata McGraw Hill Pub, New Delhi.		
6.	Soaps, their chemistry & technology, J.G. Kane, Indian Central oil seeds comp.		
	Hyderabad.		

Online- Resources

On-line Resources:- From time to time are many online resources, including websites, databases, e-books, bibliographies and platforms that offer educational videos, lectures on a range of topics can be suggested or displayed to the students.

Major websites used for chemical education such as:- Swayam, e-pg Pathshala, Swayam Prabha, NDLI, E-Sodh Sindhu, NPTEL, Virtual Labs, Process Oriented Guided Inquiry Learning (POGIL) etc.

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023 Master of Sciene, Industrial Chemistry

M.Sc. Industrial Chemistry, Semester - III

Course Code	PS03EICH52	Title of the Course	Chemical Analysis in
			Agro Food and
			Pharmaceutical
			Industires
Total Credits of the	4	Hours Per Week	4
Course			

Course	1. To demonstrate a systematic, extensive and coherent knowledge and		
Objectives:	understanding of academic field of study as a whole and it's application in		
	the various industry.		
	2. The subject provides knowledge about the basics of chemical processes		
	take place in chemical industries and allied industries.		
	3. It gives the knowledge about the clinical, Drug, Food and Fuel Industries.		

Course	ourse Content		
Unit	Description	Weightage* (%)	
1.	 Analysis of soil: Moister, pH, total nitrogen, phosphorous, silica, lime, Magnesia, Manganese, sulfur and alkali salts. Fuel analysis: Solid, liquid and Gas, ultimate and proximate analysis heating values, grading of cool, liquid fuels, flasks points, aniline point, octane number and carbon residue, gaseous fuels - producer gas and water gas - calorific value. 	25%	
2.	Clinical Chemistry: Composition of blood collection, and preparation of samples, clinical analysis - serum electrolytes, blood glucose, blood urea nitrogen, uric acid, albumin, globulin, barbiturates, acidic and alkaline phosphates, Immunoassay, principals of radiimmunoassy and applications. The blood- gas analysis -trace elements in the body.	25%	
3.	Drug analysis: Narcotics and dangerous drugs, classification of drugs, screening by gas m thin layer chromatography and spectrophotometric analysis. Introduction to Fluorescence, instrumentation and its application in Biological, Medical and Drug Development.	25%	
4.	Food analysis : Moister, ash, crude protein, fat, crud fiber, carbohydrate, calcium,potassium, sodium, and phosphates, food adulteration - common adulteration in food,contamination of food stuffs, microscopic examination of foods for adulterants,Pesticide analysis in food products, Extraction anc purification of sample, HPLC, gas chromatography for organo -phosphates, thin layer chromatography for identification of chlorinated pesticides in food products.	25%	

Teaching Learning Methodology:-	1. 2. 3.	It possess minimum standards of communication skills. They are expected to read and understand documents with in depth analyses and logical arguments. They are trained to be equipped with problem solving philosophical approaches as well as analytical reasoning. The teaching and learning process involved class lecture, Seminars, Questions, preparation, field based learning as well as peer	
		teaching & learning.	

Evaluation Pattern			
Sr.	Details of the Evaluation	Weightage*	
No.		(%)	
1.	Internal Written/ Practical Examination (As per CBCS R 6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-	15%	
	Voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS		
	R. 6.8.3)		
3.	University Examination	70%	

Course	Course Outcomes:				
1.	To build a basic knowledge of the process carried out in chemical industry.				
2.	To be able to utilize the technological methods in problem solving in process plant.				
3.	To study about the salient features of the process.				
4.	To build a bridge between theoretical and practical concepts used in industry.				

Sr.	References
No.	
1.	Fundamentals of analytical chemistry by D.A. Skoog, D.M. West and F.J. Honer, W.B. Saunders.
2.	Chromic Phenomenon, The Technological application of colour chemistry peter, Bamfield.
Onling	Descurrens

Online- Resources

On-line Resources:- From time to time are many online resources, including websites, databases, e-books, bibliographies and platforms that offer educational videos, lectures on a range of topics can be suggested or displayed to the students.

Major websites used for chemical education such as:- Swayam, e-pg Pathshala, Swayam Prabha, NDLI, E-Sodh Sindhu, NPTEL, Virtual Labs, Process Oriented Guided Inquiry Learning (POGIL) etc.

(Under Choice Based Credit Scheme)

Structure with Effect from 2022-23

M.Sc. Industrial Chemistry Semester-4

Programme Outcome (PO) - For MSc Chemistry Programme	 Master of Science program provides extended theoretical and practical knowledge of different science subjects. Master of Science programme at Sardar Patel University is designed keeping the overall back ground preparation in mind for the student to either seek a job or to become an entrepreneur. The students, after completion of Bachelor of Science can select the master's programme in the subject they have had at the final year or in a related discipline (depending upon eligibility criteria prescribed by university). Programme outcomes: At the end of the program, the students will be able to Have a deep understanding of both the theoretical and practical concepts in the respective subject. Understand laboratory processes and use scientific equipments and work independently. Develop research temperament as a consequence of their theory and practical learning. Communicate scientific information in oral and written form. Understand the issues related to nature and environmental contexts and think rationally for sustainable development. The students are able to handle unexpected situations by critically analyzing the problem.
Programme Specific Outcome (PSO) - For MSc Chemistry Semester - IV	 Students will have a firm foundation in the fundamentals and application of current chemical and scientific theories including those in Analytical Inorganic Chemistry, Organic Chemistry, Physical Chemistry, Chemistry and Industrial polymer Chemistry. After completing M.Sc. chemistry program, students will be able to: Demonstrate and apply the fundamental knowledge of the basic principles in various fields of Chemistry. Apply knowledge to build up small scale industry for developing endogenous product. Collaborate effectively on team-oriented projects in the field of chemistry or other related fields. Communicate scientific information in a clear and concise manner both orally and in writing. Inculcate logical thinking to address a problem and become result oriented with a positive attitude. Enhance the scientific temperament among the students so as to develop a research culture and implementation of the policies to tackle the burning issues at global and local level. Apply the knowledge to develop the sustainable and eco-friendly technology.

■ Take up global level research opportunities to pursue Ph.D programme targeted approach and specific
competitive exams conducted by service commission
■ Accept enormous job opportunities at all level of chemical industries, pharmaceutical industries and
placements in R & D.

Course	Course	Name of Course	Type of	T/P	Credit	Hours	Exam	Com	ponent of M	larks
Туре	Code		Course			Per	Duration	Internal	External	Total
						Week	in hrs	Total/	Total/	Total
								Passing	Passing	Passing
Core	PS04CICH51	Energy	EM & EN	Т	4	4	3	30/12	70/28	100/40
Course		Technology								
	PS04CICH52	Spectroscopy - II	EM & EN	Т	4	4	3	30/12	70/28	100/40
	PS04CICH53	Analytical	EM & EN	Т	4	4	3	30/12	70/28	100/40
		Chemistry								
	PS04CICH54	Industrial Organic	EM & SD	Р	4	8	3	30/12	70/28	100/40
		Chemistry- II								
	PS04CICH55	Analytical aspects	EM & SD	Р	4	8	3	30/12	70/28	100/40
		in Industries.								
	PS04CICH56	Comprehensive	-	Т	1	1	1	-	50/20	50/20
		Viva-Voce								
Any one	PS04EICH51	Natural Products	EM & EN	Т	4	4	3	30/12	70/28	100/40
Elective	PS04EICH52	Introduction to	EM & EN	Т	4	4	3	30/12	70/28	100/40
		biochemistry								
		Total			25					650

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023 Master of Science, Industrial Chemistry M.Sc. Industrial Chemistry, Semester - IV

Course Code	PS04CICH51	Title of the Course	Energy
			Technology
Total Credits of	4	Hours Per Week	4
the Course			

Course	To provide an idea of the challenges in the field of energy
Objectives:	management and to provide a perspective on energy technology.
	Students will learn the systems dimensions of the energy prolems
	and its historical perspective on energy technology and system
	development. For different types of energy sources utilization in
	industries, the procedure of power generation, transportation along
	with conventional and advanced application in different sectors
	should be known by the students. This subject will guide students in
	the same direction.

Course Content				
Unit	Description	Weightage*		
		(%)		
1.	(a) Solar Energy	25%		
	Solan constatn, solar radiation & related terms, measurement			
	of solar radiation, solar energy collectors- flat plate collector,			

	air collector, collectors with porous absorbes, concentrating	
	collectors, applications & advantages of various collectors,	
	selective absorber coatings, solar energy storage systems	
	(thermal electrical, chemical & mechanicla), solar pond,	
	applications of solar energy.	
	(b) Wind Energy	
	Basic principles, power in wind, force on blades & turbines,	
	wind energy conversion, site selection, basic componets of	
	wind energy conversion system (WECS), classification of	
	WECS, wind energy collectors, applications of wind energy.	
2.	(a) Geothermal Energy	25%
	Geothermal resources, hydrothermal resources, liquid	
	dominated systems, geo pressured resources, petro thermal	
	systems, magma resources, energy conservation &	
	comparison with other resources, applications of geothermal	
	energy.	
	(b) Nuclear Energy	
	Fission, fusion, fuel for nuclear fission reactor (exploration,	
	mining, milling, concentrating, refining, enrichment, fuel	
	fabrication, fuel use, reprocessing, waste disposal), storage &	
	transportation, fast & slow neutrons, multiplication factors &	
	reactor control, uranium enrichment process, nuclear reactor	
	power plant, fast breeder reactor, boiling water reactor,	
	pressurised heavy & light water reactor.	
L		

3.	(a) Energy From Oceans	25%
	OTEC, methods (open cycle & close cycle) energy from	
	tides, components of tidal power plants, operation, methods	
	of utilization of tidal energy, storage, ocean waves, wave	
	energy conversion devises.	
	(b) Energy from Biomass	
	Types of biogas plants construction details, applications	
	biogas from plant wastes, thermal gasification of biomass,	
	properties & utilization of bigras.	
4.	Fuels and Fuel Cell	25%
	(a) Fuels	
	Wood & charcoal, peat, lignite, sub-bituminous &	
	bituminous coals, semi anthracite and anthracite coals,	
	cannel & bighead coal, origin of coal, composition of coal,	
	analysis & properties of coal gasification & liquefaction of	
	solid fuels.	
	(b) Fuel Cell	
	Introduction, hydrogen- oxygen fuel cell, ion exchange	
	membrane cell, fossil fuel cell, molten carbonate cell,	
	advantages & disadvantages, conversion efficiency,	
	polarization, type of electrodes, applications of fuel cells.	

Teaching	To meet the effective teaching and the learning requirements,			
Learning	teaching-learning methodology comprises classroom teaching,			
Methodology:-	use of e-resources, library books, encouraging students to			
	participate in seminars, presentation by students, assigning work			
	based upon subject requirements.			

Evaluation Pattern				
Sr.	Details of the Evaluation	Weightage*		
No.		(%)		
1.	Internal Written/ Practical Examination (As per CBCS R 6.8.3)	15%		
2.	Internal Continuous Assessment in the form of Practical, Viva- Voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R. 6.8.3)	15%		
3.	University Examination	70%		

Cours	e Outcomes: having completed this course, the learner will be able to
	After learning the course the students should be able:
1.	To make students aware about all the energy sources avaialable and the ways to turn it into power.
2.	To understand the principles behind different non covnentional energy sources.
3.	To make student understand the global scenario of energy sector and to work on better economical solutions of it.
4.	To utilize the renewable energy in problem solwing where conventional energy are not fruitful and reqire replacement.
5.	To understand the design and applications of power generating devices using renewable energy sources as per industrial requirements

Sr. No.	References
1.	Energy sources 2nd Ed. by G.D. Raj, Khanna Publications, New Delhi
2.	Fuels & combustion by Samir Sarkar, Orient Longmans (1974)
3.	Solar Energy by Sukatame, Tata McGraw Hill, New Delhi.
4.	Energy Technology by Rao & Parulaker

Online- Resources

On-line Resources:- From time to time are many online resources, including websites, databases, e-books, bibliographies and platforms that offer educational videos, lectures on a range of topics can be suggested or displayed tot he students.

Major websites used for chemical education such as:- Swayam, e-pg Pathshala, Swayam Prabha, NDLI, E-Sodh Sindhu, NPTEL, Virtual Labs, Process Oriented Guided Inquiry Learning (POGIL) etc.

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25)

Syllabus with effect from the Academic Year 2022-2023

Master of Science, Industrial Chemistry

M.Sc. Industrial Chemistry, Semester - IV

Course Code	PS04CICH52	Title of the Course	Spectroscopy- II
Total Credits of	4	Hours Per Week	4
the Course			

Course	1.	Know how nuclear spins are affected by a magnetic field, &		
Objectives:		be able to explain what happens when radiofrequency		
		radiation is absorbed.		
	2.	Be able to predict the splitting pattern in the NMR & CMR		
		signal expected from a compound given its structure.		
	3.	Be able to predict the fragmentation patterns expected to arise		
		in the mass specturm of alkanes, alkyl, halides, ethers,		
		alcohols & ketones.		
	4.	Be able to use the mass specturm of a compound to find the		
		molecules mass & to help identify the structure of a		
		compound.		
	5.	Provide students with a basic under standing of the design,		
		operation & control of an HPLC system.		

Cours	Course Content			
Unit	Description	Weightage*		
		(%)		
1.	Nuclear Magnetic Resonance (NMR) Spectroscopy:-	25%		
	Principles of NMR spectroscopy, nucler spin states, nuclear			
	magnetic moments, absorption of energy, chemical shift &			
	its measurement shilding & deshilding of protons,			
	anisotropy, chemical shift & chemical equivalence, integrals,			
	spin-psin, splitting, N+1 rule, mechanism of coupling &			
	cooling constant, presentation of spectra, magnetic			
	equivalence, allylic coupling, exchangeable protons,			
	Interpretation of NMR spectra of simple organic compounds			
	effect of enantiotropy, diastereotopic protons, karplus			
	curves- variation of coupling constant with dihedral angles.			
	Techniques of simplifying NMR. Spectra, doble resonance,			
	shift reagents & deputation.			
2.	Carbon - 13 NMR Spectroscopy:-	25%		
	Carbon-13 nucleus, operating frequency, carbon-13 chemical			
	shifts & their calculation, spin-spin coupling, proton-			
	coupled, proton- decoupled & off resonance carbon spectra.			
	use of 13c Sepctra- differentiating stereoisomers, nuclear			
	overhauser effect. 13 C Dept Spectra- Dept Spectra -			
	Differentiation in primary, secondary And Tertiary carbons			
	By Dept-45, Dept-90, Dept-135 Spectra.			

3.	Mass Spectroscopy:-	25%
	Basic Principles, interpretation of mass spectra, molecular	
	ions, metastable ions & isotopes ion, ion abundances	
	fragmentation process representation of fragmentation, basic	
	fragmentation types & rules. Malafferty rearrangement.	
	Fragmentation of organic compounds with respect to their	
	structure determination associated with functional groups-	
	alkanes, alkene cycloalkanes, aromatic hydrocarbons,	
	Halides, alcohols, phenols, ethers, aldehydes, ketones,	
	carboxylic acids esters, amides, acid chlorides, nitro	
	compounds & amine, retro Diels- Alder Fragmentation &	
	Nitrogen rule.	
4.	High Performance Liquid chromatography (HPLC)	25%
	Principle, instrumentation, identification of peaks, effect of	
	temperature & packing material, types of HPLC: partion,	
	adsorption, ionexchange, size-exclusion or gel derivatization	
	in HPLC: Post & Pre coloumns, applications.	

Teaching	To meet the effective teaching & the learning requirements				
Learning	teaching learning methodology comprises classroom teaching use				
Methodology:-	of e-resources, library books, IT tools, encouraging students to				
	participate in seminars/ workshops, presentation by students				
	assigning work based upon subject requirement etc.				

Evaluation Pattern			
Sr.	Details of the Evaluation	Weightage*	
No.		(%)	
1.	Internal Written/ Practical Examination (As per CBCS R	15%	
	6.8.3)		
2.	Internal Continuous Assessment in the form of Practical, Viva- Voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R. 6.8.3)	15%	
3.	University Examination	70%	

Cours	Course Outcomes: having completed this course, the learner will be able to			
1.	Relate NMR & CMR parameters such as chemical shift, coupling constant			
	etc.			
2.	The ability to investigate & determine the structure of typical organic			
	chemical compounds using suitable NMR & CMR spectra.			
3.	Explain the theory behind mass spectroscopy.			
4.	Describe how ionization of molecules can take place.			
5.	Compare different technologies & applications of HPLC.			

Sr.	References
No.	
1.	"Spectroscopic methods in organic chemistry" D.H. Williams & Ian
	Fleming.
2.	"Organic mass spectroscopy", K.G. Das & E.P. James, Oxford & IBH
	Publishing Co.

3.	"Spectroscopy" Pragati Prakashan by H.Kaur.		
4.	Introduction to Spectroscopy D.L. Pavia, G.M. Lampman & G.S. Kriz, 3rd		
	Edition (Thomson Books/ Cole)		
5.	Spectroscopic methods in organic chemistry, D.H. Williams. & I.Fleming		
	4th Edution. (McGraw-Hill Book Company)		
6.	Chromatography: Basic Principles, Sample Preparations & Related		
Methods by Elsa Lundanes, Leon. Reubsaed, Type Greibrok, Joh			
	& Soncs.		
7.	Principles & Practicies of chromatography by R.P.W. Scott, Library for		
	Science.		
8.	Practical HPLC Method Development By Lloyd R. Snyder, Wiley-		
	Interscience.		
9.	Organic Analytical Chemistry Theory & Practice Jag Mohan, Narosa		
	Publishing House 2003.		
10.	Spectrophotometric Identificationof Organic Compounds 6th Ed. John		
	Wiley & Sons, Inc, New York, 2004.		
L			

Online- Resources

On-line Resources:- From time to time are many online resources, including websites, databases, e-books, bibliographies and platforms that offer educational videos, lectures on a range of topics can be suggested or displayed tot he students.

Major websites used for chemical education such as:- Swayam, e-pg Pathshala, Swayam Prabha, NDLI, E-Sodh Sindhu, NPTEL, Virtual Labs, Process Oriented Guided Inquiry Learning (POGIL) etc.

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25)

Syllabus with effect from the Academic Year 2022-2023

Master of Science, Industrial Chemistry

M.Sc. Industrial Chemistry, Semester - IV

Course Code	PS04CICH53	Title of the Course	Analytical
			Chemistry
Total Credits of	4	Hours Per Week	4
the Course			

Course	1.	One will be able to understand different techniques of
Objectives:		analysis.
	2.	Different types of chromatographic techniques are covered.
	3.	Able to perform electroanalysis of chemical.
	4.	Learning of advanced instrumental techniques.

Unit	Description	Weightage*
		(%)
1.	Titration techniques	25%
	Precipitation phenomena: Precipitation from homogeneous	
	solutions, organic precipitants in inorganic analysis. Solvent	
	extraction of metal ions, nature of extractant, distribution	
	law, partition coefficients, types of extractions and	

	applications. Theories of redox indicators, titration curves,	
	feasibility of redox titrations. Chelometric titrations-titration	
	curves with EDTA, feasibility of EDTA titrations, selective	
	masking and demasking techniques, industrial applications	
	of masking.	
2.	UNIT II Chromatography	25%
	Chromatographic Techniques:	
	Principles, classifications and theory of chromatographic	
	separations.	
	Gas Chromatography: Principles, columns, detectors-TCD,	
	FID, ECD and column efficiency, capacity factors,	
	resolution. Practical aspects of GC-Hypernated techniques.	
	Liquid Chromatography HPLC: Principles, equipment,	
	columns, detectors, choice of column, materials GC, GCMS	
	and LCMS.	
	Ion exchange chromatography: Structures of resins,	
	selectivity, capacity of resins, ion exchange equilibria,	
	applications-removal of interfering ions, concentration and	
	recovery of traces, anion and cation separations and	
	application for the separation of lanthanides and actinides.	
	Techniques of column chromatography and size exclusion	
	chromatography.	
	Thin layer chromatography, efficiency of TL plates,	
	selection of stationary and mobile phases. Qualitative and	
	quantitative analysis	
	Paper chromatography: Theory and principle. Techniques:	
L		

	one, two- dimensional and circular paper chromatography.	
	Mechanism of separation, structure of cellulose and types of	
	paper. Methodology- Factors affecting Rf values.	
	Advantages and applications.	
3.	Electroanalytical Techniques	25%
	Introduction, theory, principle, methodology, instrumentation	
	and application of the following techniques: Conductometry,	
	Potentiometry, Colometry, Voltammetry.	
	Fluorometry and Phosphorimetry:	
	Introduction fluorescence and phosphorescene, factors	
	affecting fluorescence and phosphorescence, internal	
	conversion intersystem crossing (radiationless proceses)	
	quenching theory, relatiponship between intensity of	
	fluorescence and concentration, instrumentation- basic	
	difference in the measurement of fluorescence and	
	phosphorescence, spectrofluorometers, advantages,	
	limitations and precautions.	
4.	Advanced instrumental techniques:	25%
	Spectrophotometry, atomic spectroscopy	
	Thermal Analysis:- T.G, DTA and DSC- Principles and	
	applications.	
	X-ray differaction techniques- Powder and single crystal	
	XRD, Principal applications.	

Teaching	We have forged over traditional and some of the innovative
Learning	approaches as teaching learning methodologies such as direct
Methodology:-	instructions, flipped class rooms, class room discussion unit based
	quiz, problem solving unit activities student presentation etc.
	This method tends to increase the self confidence among the
	students, increase the ability of providing and convincing.

Evalu	Evaluation Pattern		
Sr.	Details of the Evaluation	Weightage*	
No.		(%)	
1.	Internal Written/ Practical Examination (As per CBCS R	15%	
	6.8.3)		
2.	Internal Continuous Assessment in the form of Practical,	15%	
	Viva- Voce, Quizzes, Seminars, Assignments, Attendance		
	(As per CBCS R. 6.8.3)		
3.	University Examination	70%	

e Outcomes:
It includes various techniques of chemical analysis.
- Will be able to understand the aspects of some advanced techniques of
analysis.
- Able to perform various types of chromatographic techniques.
- Principle technique and performance of absorption spectra and X-ray
diffraction will be cleared.

Sr.	References
No.	
1.	G.D. Christian, Analytical Chemistry, John Wiley, 1986.
2.	R-A. Day and A.L. Underwood: Quantitative Analysis, (Prentice Hall, India), 1998.
3.	B.K. Sharma, Instrumental methods of chemical analysis, Goel publishing House, 2000.
4.	Skoog, Holler and Nieman: Principles of Instrumental Analysis, Harcourt Acta, 2001.
5.	B.K. Sharma, Chromatogarphy, Krishna Prakashan media, 1997.
6.	S. K. Chatterjee, X-Ray Diffraction theory and application, ISTE, 2007.
7.	A.G. Jackson: Handbook of Crystallography For Electron Microscopists and Others Library of Congress Cataloging-in-Publication Data Jackson, A. G. (Allen G.) ISBN-13: 978-1-4612-7776-7 1, 1991.

Online- Resources

On-line Resources:- From time to time are many online resources, including websites, databases, e-books, bibliographies and platforms that offer educational videos, lectures on a range of topics can be suggested or displayed tot he students.

Major websites used for chemical education such as:- Swayam, e-pg Pathshala, Swayam Prabha, NDLI, E-Sodh Sindhu, NPTEL, Virtual Labs, Process Oriented Guided Inquiry Learning (POGIL) etc.

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25)

Syllabus with effect from the Academic Year 2022-2023

Master of Science, Industrial Chemistry

M.Sc. Industrial Chemistry, Semester - IV

Course Code	PS04CICH54	Title of the Course	Practical's
	PS04CICH55		
Total Credits of	8	Hours Per Week	16
the Course			

Course	1.	The students are trained to handle the experimental set up
Objectives:		including standardization.
	2.	Qualitative Analysis of Organic Compounds.
	3.	Estimation of Organic functional group/ molecules by
		titrimetric methods.
	4.	Be able to interpret the spectrum of any organic compounds /
		molecules.
	5.	This course gives an idea of various analytical techniques.

Course Code	PS03CICH54	Title of the Course	Industrial Organic
			Chemistry II
Total Credits of	4	Hours Per Week	8
the Course			

Description		
Spectrum Analysis (5 Practical's)		
Estin	mation	
1.	Determine the amount of phenol in the given solution.	
2.	Determine the amount of crotonic acid in the given solution.	
3.	Determine the No and percentage of Hydroxy / goup (-OH) of a given	

- sample.To determine % of Vitamin C in a given table.
- 5. To determine the amount of acetic acid and acetamide in the given soultion

Course Code	PS04CICH55	Title of the Course	Analytical aspects
			in Industries
Total Credits of	4	Hours Per Week	8
the Course			

1.	To determine the rate of acid-catalyst Iodination of acetone	
	in presence of excess acid and acetone at room temperature.	
2.	To determine the transition temperature of alauber's salt by	
	solubility method.	
3.	To determine the amount of aspirin in a given tablet by	
	conduct metrically.	

4.	To determine the rate constant of the saponification of ethyl	
	acetate at different temperatures conductometrically and	
	calculate the energy of activation of the reaction.	
5.	To determine the neutralisation capacity of given antacid	
	tables.	
6.	Preparation of pure sample of ferrous ammonium sulphate.	
7.	Preparation of pure sample of potash alum	
8.	To determine % Fe in iron tablet by colorimetry.	
9.	Assay of Fe in pharmaceutical preparation using potassium	
	thiocynate by colorimetric.	
10.	Determination of distribution co-efficient of ammonia	
	between chloroform & water.	
11.	Proximate analysis of coal	

Teaching	Demonstration/ Hands on training of various types of analysis
Learning	with or without instruments.
Methodology:-	

Evaluation Pattern		
Sr.	Details of the Evaluation	Weightage*
No.		(%)
1.	Internal Practical Examination (As per CBCS R. 6.8.3)	30%
2.	University Examination	70%

Cours	se Outcomes:
1.	Be able to perform hydroxy/ group estimation, phenol estimation, crotonic acid estimation, ascorbic acid estimation and acetic acid and acetamide
	estimation.
2.	To get an expertise in spectrum analysis.
3.	Students will be able to understand rate of reaction with/ without catalyst.
5.	Determine the amount of aspirin in drugs.
6.	Students will know about the colorimetric analysis.

Sr.	References
No.	
1.	Comprehensive practical organic chemistry Preparationa nd quantitative.
	Analsys. By V.K Ahluwalia and Renu Agarwal
2.	Comprehensive practical organic chemistry Qualitative Analysis By V.K.
	Ahluwalia and Renu Agarwal.
3.	A Laboratory Manual of Experiments in Physical Chemistry By D. Breman
	and C.F.H. Tipper. (Mcgraw Hill Publishing Company Ltd. London)
4.	Systematic Experimental Physical Chemistry by S.W. Rajbhoj and T.K.
	Chondhekar (Anjali Publication Auran Gabad)
5.	Advanced Practical Inorganic chemisty by Gurdeep Raj (Goel Publishing
	House)
Onlin	Descurrens

Online- Resources

On-line Resources:- From time to time are many online resources, including websites, databases, e-books, bibliographies and platforms that offer educational videos, lectures on a range of topics can be suggested or displayed tot he students.

Major websites used for chemical education such as:- Swayam, e-pg Pathshala, Swayam Prabha, NDLI, E-Sodh Sindhu, NPTEL, Virtual Labs, Process Oriented Guided Inquiry Learning (POGIL) etc.

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023 Master of Science, Industrial Chemistry

M.Sc. Industrial Chemistry, Semester - IV

Course Code	PS04CICH56	Title of the Course	Comprehensive
			Viva
Total Credits of	1	Hours Per Week	1
the Course			

Course	1.	To assess the overall knowledge of the student in the
Objectives		relevant subjects covered in core as well as elective courses.

Vallabh Vidyanagar, Gujarat

(Reaccredited with 'A' Grade by NAAC (CGPA 3.25)

Syllabus with effect from the Academic Year 2022-2023

Master of Science, Industrial Chemistry

M.Sc. Industrial Chemistry, Semester - IV

Course Code	PS04EICH51	Title of the Course	Natural Products
Total Credits of	4	Hours Per Week	4
the Course			

1.	The student is able to understand basic importance of Natural
	products.
2.	Learn the different types of alkaloids, Vitamins, Steroids &
	Terpenoids.
3.	The student is able to learn about the synthesis of alkaloids,
	vitamins, steroids & Terpenoids.
4.	Learn the different biogenesis of Alkaloids, Terpenoids,
	Carotenoids & Steroids.
	2. 3.

	se Content	
Unit	Description	Weightage*
		(%)
1.	Introduction of natural products, General methods for the	25%
	structure determination of natural products.	
	Vitamins: Structure & Synthesis of Vitamin Al, Vitamin B ₁	
	(Thiamine), Vitamin B6 (Pyriodoxine) and Biotin (Vitamin	

	H), Synthesis of Vitamin C.				
2.	Alkaloids: Introduction of opium alkaloids, Structure and	25			
	Synthesis of Morphine, rearrangement in opium alkaloids,				
	structure and synthesis of Sceletium alkaloid A4, Structure				
	and synthesis of Mahanimbine, Synthesis of Resperpine and				
	Tylophorine, biogenesis of Alkaloids				
3.	Terpenouids and Cartenoids: Structure and synthesis of	25			
	cyclic sesqiterpenoids eudesmol and cadinene, Structure and				
	Synthesis of B- Carcotene, Synthesis of Caryophyllene and				
	Khusimone, molecular rearrangement of Caryophyllene and				
	Logifolene, biogenesis of Terpenoids and Carotenoids.				
4.	Steroids: Structure and Synthesis of Cholestrol, Synthesis	25			
	of Cortisone, Androgens and Oestrogens, Chemistry of bile				
	acids, Biogenesis of Steroids.				

Teaching	To meet the effective teaching & the learning requirements,
Learning	teaching learning methodology, comprises, classroom teaching,
Methodology:-	use of e-sources, library books, IT tools, encouraging students to
	participate in Seminar/ workshops, presentation by students,
	assigning work based upon subject requirements etc.

Evaluation Pattern			
Sr.	Details of the Evaluation	Weightage*	
No.		(%)	
1.	Internal Written/ Practical Examination (As per CBCS R 6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva- Voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R. 6.8.3)	15%	
3.	University Examination	70%	

Cours	e Outcomes:
1.	Able to classify natural products from their chemical structure & to indicate
	their possible biosynthesis.
2.	Students able to know about structure, synthesis & different biogenesis of
	Alkaloids, Terpenoids, Carotenoids & Steroids.
3.	Students able to know about the significance & importance of Alkaloids,
	Terpenoids carotenoids & steroids.

Sr.	References
No.	
1.	The Chemistry of Natrual Products, K.W. Bentley, Vol. I-V, (interscience)
2.	Organic Chemistry, Vol.2, I.L. Finar, 5th Edition (1994), ELBS Publications.
3.	Natrual Products Chemistry Vil. I & II, Nakanishi et al., Academic Press Pub. (1974)

4.	The molecules of Natre, J.B. Hendrickson, W.A. Benjamin Inc (1965)
5.	Selected Organic Synthesis, Ian Fleming, John Wiley (1977)
6.	Chemistry of Natrual Products, N.R. Krishnaswamy, University Press Ltd. (1999)

Online- Resources

On-line Resources:- From time to time are many online resources, including websites, databases, e-books, bibliographies and platforms that offer educational videos, lectures on a range of topics can be suggested or displayed tot he students.

Major websites used for chemical education such as:- Swayam, e-pg Pathshala, Swayam Prabha, NDLI, E-Sodh Sindhu, NPTEL, Virtual Labs, Process Oriented Guided Inquiry Learning (POGIL) etc.

Vallabh Vidyanagar, Gujarat (Reaccredited with 'A' Grade by NAAC (CGPA 3.25) Syllabus with effect from the Academic Year 2022-2023 Master of Science, Industrial Chemistry M.Sc. Industrial Chemistry, Semester - IV

Course Code	PS04EICH52	Title of the Course	Introduction to
			Biochemistry
Total Credits of	4	Hours Per Week	4
the Course			

Course	The objective of the course			
Objectives:	1. T	To provide basic understanding of the Chemistry of		
	bi	omolecules.		
	2. T	o study the properties, classification and function of various		
	bi	ological molecules such as vitamins, proteins, carbohydrates		
	ar	nd nucleic acids.		
	3. T	o gain knowledge about enzymes, erzyme kinetics and their		
	re	regulation.		
	4. T	o enlighten students about the role of water in interaction of		
	bi	omolecules.		

Course Content		
Unit	Description	Weightage*
		(%)
1.	Vitamins:	25%
	Classification, introduction, chemistry absorption, transport,	
	mobilization and biochemical functions of Vitamins: A,	
	E,K,C,B ₁ ,B ₂ ,B ₆ , B ₁₂ , H, CoA, Folic acid Niacin.	

	Lipids:	
	Nomenclature, Structure and physical properties of some	
	natrually occurring fatty acids, triacelgylycerol and waaxes	
	as sources of stored energy, insulation and water repellents,	
	Types of membrane lipids, Introduction to glycerophospho	
	lipids, galacto lipids, sphingo lipids, phospho lipids and	
	sterols.	
2.	Proteins:	25%
	Properties, Classification and Conventions of common	
	amino acids, stereoisomerism in a - amino acids, Peptides:	
	Formation, Merrifelds Synthesis, compositions and sizes,	
	protin separation, purificationa nd Characterization:	
	Sequencing of Peptides: Sanger's method Adman	
	degradation, outline of other mehtods: Protein Sequences and	
	Evoluation: Oxygen binding proteins- hemoglobin and	
	Myoglobin in Oxygen transport and storage.	
3.	Carbohydrates:	25%
	Classification and stereochemistry, Biologically important	
	hexose derivatives, Nomenclate for disaccharides, strcutre	
	and role of some Homo and Hetero Polysaccharides,	
	Glycoconjugates: Proteoglycans, Glycoproteins and	
	Glycolipids, Introduction to Glycobiology (The Sugar Code)	
	Water:	
	Interaction among biomolecules in aquenous systems,	
	Buffering aginst pH changes in biological systems,	
	participation of water in biological rections.	

4.	Enzymes:	25%
	Classification Nomenclature & extraction factors affections,	
	catalytic activity and specificity in action, regulation of	
	enzyme activity, enzyme inhibition.	
	Illustrative enzymatic	
	recations using Chymotrypsin, Hexokinase, enolase and	
	Lysozyme	
	Nuclelc acids:	
	Components of nucleic acids, nomenclature of nucleotides,	
	strucre of DNA Chargaff's Rule of DNA Composition,	
	Watson and Crick Model, structure and types of RNA.	

Teaching	-	Topics in the course will be taught and discussed in
Learning		interactive sessions using conventional black board and
Methodology:-		chalk as well as ICT tools such as power-point
		presentations & videos.
	-	Course material will be provided from primary and
		secondary sources of information.
	-	To develop critical thinking and conceptual knowledge,
		group discussions and seminar presentations will be
		conducted by the students.

Evaluation Pattern			
Sr.	Details of the Evaluation	Weightage*	
No.		(%)	
1.	Internal Written/ Practical Examination (As per CBCS R	15%	
	6.8.3)		

2.	Internal Continuous Assessment in the form of Practical,	15%		
	Viva- Voce, Quizzes, Seminars, Assignments, Attendance			
	(As per CBCS R. 6.8.3)			
3.	University Examination	70%		

Course Outcomes:					
1.	After the successful competition of the course, the learner will be able to:				
	1.	Carry out laboratory experiments using biomolecules.			
	2.	Get trained & work with the application of bimolecular industries.			
	3.	Describe all the biomolecules with their classification & function			
	4.	Explain the importance of water in biological relations.			

References	
Lehninger Principles of Biochemistry, David L. Nelson and Michael M.	
Cox {Palgrave MacMillan / W.H. Freeman & Company, New York]	
Principles of Biochemistry, Donald J. Voet, Judith G. Voet, Charlottee W.	
Pratt [John Wiley & Sons]	
Biochemistery, U. Satyanarayana, Books & Allied (p) Ltd., Kolkata (India)	
•	

Online- Resources

On-line Resources:- From time to time are many online resources, including websites, databases, e-books, bibliographies and platforms that offer educational videos, lectures on a range of topics can be suggested or displayed tot he students.

Major websites used for chemical education such as:- Swayam, e-pg Pathshala, Swayam Prabha, NDLI, E-Sodh Sindhu, NPTEL, Virtual Labs, Process Oriented Guided Inquiry Learning (POGIL) etc.