

PROGRAMME STRUCTURE Master of Science in Chemistry MSc (Inorganic Chemistry) Semester: III

Programme Outcome (PO) - For MSc Chemistry Programme	 Master of Science program provides extended theoretical and practical knowledge of different science subjects. Master of Science programme at Sardar Patel University is designed keeping the overall back ground preparation in mind for the student to either seek a job or to become an entrepreneur. The students, after completion of Bachelor of Science can select the master's programme in the subject they have had at the final year or in a related discipline (depending upon eligibility criteria prescribed by university). Programme outcomes: At the end of the program, the students will be able to Have a deep understanding of both the theoretical and practical concepts in the respective subject. Understand laboratory processes and use scientific equipments and work independently. Develop research temperament as a consequence of their theory and practical learning. Communicate scientific information in oral and written form. Understand the issues related to nature and environmental contexts and think rationally for sustainable development. The students are able to handle unexpected situations by critically analyzing the problem.
Programme Specific Outcome (PSO) - For MSc Chemistry Semester - I	 Students will have a firm foundation in the fundamentals and application of current chemical and scientific theories including those in Analytical Inorganic Chemistry, Organic Chemistry, Physical Chemistry, Chemistry and Industrial polymer Chemistry. After completing M.Sc. chemistry program, students will be able to: Demonstrate and apply the fundamental knowledge of the basic principles in various fields of Chemistry. Apply knowledge to build up small scale industry for developing endogenous product. Collaborate effectively on team-oriented projects in the field of chemistry or other related fields. Communicate scientific information in a clear and concise manner both orally and in writing. Inculcate logical thinking to address a problem and become result oriented with a positive attitude. Enhance the scientific temperament among the students so as to develop a research culture and implementation of the policies to tackle the burning issues at global and local level.

Apply the knowledge to develop the sustainable and eco-friendly technology.
■ Take up global level research opportunities to pursue Ph.D programme targeted approach and specific
competitive exams conducted by service commission
■ Accept enormous job opportunities at all level of chemical industries, pharmaceutical industries and
placements in R & D.

To Pass	At least 40% Marks in the University Examination in each paper and 40% Marks in the aggregate of University and Internal examination
	in each course of Theory, Practical & 40% Marks in Viva-voce.

Course Type	Course Code	Name of	Type of Course T		Credit	Hours per Week	Exam Duration	Component of Marks		
		Course		/P			in in s	Internal	External	Total
								Total/ Passing	Total/ Passing	Total/ Passing
Core Course	PS03CINC51	Spectroscopy - I	EM & EN	Т	4	4	3	30/10	70/28	100/40
	PS03CINC52	Inorganic reactions and Reaction Mechanism	EM	Т	4	4	3	30/10	70/28	100/40
	PS03CINC53	Organometallic Compounds	EM	Т	4	4	3	30/10	70/28	100/40
Core Course	PS03CINC54	Practicals OR	EM&SD	Р	4	8	6	30/10	70/28	100/40
(Any One)	PS03CINC55	Project Work	EM&SD	Р	4	8		30/10	70/28	100/40
Core Course	PS03CINC56	Practicals OR	EM&SD	Р	4	8	6	30/10	70/28	100/40
(Any One)	PS03CINC57	Project Work	EM&SD	Р	4	8		30/10	70/28	100/40
Core Course	PS03CINC58	Comprehensive Viva		I	1	1			50/20	50/20
Elective Course (Any one)	PS03ECHE51	Separation methods	EM& EN	Т	4	4	3	30/10	70/28	100/40
	PS03ECHE52	Analytical techniques in Materials characterization	EM& EN	Т	4	4	3	30/10	70/28	100/40
	PS03ECHE53	Applications of Inorganic Chemistry in Industry	EM& EN	Т	4	4	3	30/10	70/28	100/40

	PS03ECHE54	Selected Topics in Advanced Inorganic	EM&	Т	4	4	3	30/10	70/28	100/40
		Chemistry-I	EN							
	PS03ECHE55	Mechanical and Electrical Properties of Polymers	EM& EN	Т	4	4	3	30/10	70/28	100/40
	PS03ECHE56	Selected Topics in Polymers-I	EM& EN	Т	4	4	3	30/10	70/28	100/40
	PS03ECHE57	Advanced Characterization Techniques	EM& EN	Т	4	4	3	30/10	70/28	100/40
	PS03ECHE58	Selected Topics in Physical Chemistry- II	EM& EN	Т	4	4	3	30/10	70/28	100/40
	PS03ECHE59	Selected Topics in Organic Chemistry	EM& EN	Т	4	4	3	30/10	70/28	100/40
	PS03ECHE60	Occupational Practices	EM& EN	Т	4	4	3	30/10	70/28	100/40
					25					650
Add-on Course	MOOCs	course from Swayam Portal								

EMPLOYABILITY = EM, ENTREPRENEURSHIP = EN and SKILL DEVELOPMENT = SD

* Project work (as optional) in place of practicals; to be offered to some of the students, based on their merit, interest and placement with the teachers (Marks : 200). The project shall have to be carried out under the allotted teacher(s) and a dissertation shall be submitted and will be assessed for internal (60 marks) and external (140 marks), in the usual manner.

Master of Science, Inorganic Chemistry M.Sc. Inorganic Chemistry, Semester (III)

Course Code	PS03CINC51	Title of the Course	Spectroscopy-I			
Total Credits of the Course	4	Hours per Week	4			
Course Objectives:	 The stude techniques The stude quantitativ The stude organic an The studer analysis of 	nts explain the nts apply spect e analysis of org nts analyse spe d inorganic mole nts predict the po c chemicals.	ain the basic theory of important spectroscopic ly spectroscopic techniques for qualitative and is of organic and inorganic substances. yse spectral data to elucidate the structures of nic molecules/ species. ct the possible uses of spectroscopic techniques in als			

Course	Course Content				
Unit	Description	Weightage* (%)			
1.	Infrared Spectroscopy Theory of Infrared (IR) Spectroscopy, Molecular vibrations, Characteristic group absorption frequencies, Interpretation of spectra. Ultraviolet Spectroscopy Theory of electronic transition and Ultraviolet (UV) absorptions, chromophores and auxochromes, Woodward-Fisher rules, Fieser-Kuhn rule, Characteristic absorptions in various compounds, Interpretation of UV spectra	25%			
2.	Nuclear Magnetic Resonance Spectroscopy ¹ H Nuclear Magnetic Resonance (¹ H NMR) spectroscopy, Chemical shifts and factors affecting chemical shifts, Splitting of the signals – spin couplings and coupling constants, Chemical shift equivalence and magnetic equivalence, ¹³ C-NMR spectroscopy, Proton coupled and decoupled ¹³ C NMR spectra, Chemical shifts in ¹³ C NMR spectra and their calculation, ¹³ C- ¹ H coupling constants, ¹³ C - DEPT spectra, Nuclear Overhauser Effect, NMR Spectroscopy of other important spin ¹ / ₂ nuclei (¹⁵ N, ¹⁹ F, ²⁷ Al, ²⁹ Si, ³¹ P), Interpretation of NMR spectra	25%			
3.	Electron Spin Resonance Spectroscopy Theory of Electron Spin Resonance (ESR) Spectroscopy, Instrumentation, Factors affecting the g-values, Differences between NMR and ESR, Hyperfine interactions, Interpretation of ESR spectra, Applications of ESR	25%			
4.	Mass Spectroscopy Theory of Mass Spectroscopy, Instrumentation, Ionization techniques, Mass analyzers, Fragmentations and rearrangements, Interpretation of	25%			

mass spectra, Determination of molecular formula, Mass spectra of some chemical classes

Teaching- Learning	Class room teaching, seminars, quizzes, and assignments
Methodology	

Evalu	Evaluation Pattern			
Sr. No.	Details of the Evaluation	Weightage		
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%		
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%		
3.	University Examination	70%		

Cou	Course Outcomes: Having completed this course, the learner will be able to		
1.	Explain the theory, instrumentation and application of important spectroscopic techniques such as IR, UV-vis, NMR and mass spectrometry.		
2.	Determine the structure of organic and inorganic compounds using spectroscopic techniques.		
3.	Analyse the spectral data of organic and inorganic substances.		
4.	Acquire the knowledge of instrumentation of various modern spectrometers.		

Sugges	Suggested References:		
Sr. No.	References		
1.	Spectroscopic Identification of Organic Compounds by R. M. Silverstein and F. X. Webster, 6 th edition, John Wiley & Sons.		
2.	Introduction to Spectroscopy by D. L. Pavia, G. M. Lampman and G. S. Kriz, 3 rd edition, Thomson Brooks/Cole.		
3.	Spectroscopic Methods in Organic Chemistry by D. H. Williams and I. Fleming, 4 th edition, McGraw–Hill Book Company.		

4.	Organic Spectroscopy by William Kemp, 3 rd edition, Palgrave.
5.	Organic Spectroscopy–Principles and Applications by Jag Mohan, 2 nd edition, Narosa Publishing House.
6.	Spectroscopy of Organic Compounds by P. S. Kalsi, 5 th edition, New Age International Publishers.

On-line resources to be used if available as reference material

On-line Resources

www.nptel.ac.in

www.swayam.gov.in

www.epgp.inflibnet.ac.in (e-PG pathshala)

www.ndl.iitkgp.ac.in (National Digital Library)

Master of Science, Inorganic Chemistry M.Sc. Inorganic Chemistry, Semester (III)

Course Code	PS03CINC52	Title of the	Inorganic reactions and Reaction Mechanism
Total Credits		Hours per	Witchamsin
of the Course	4	Week	4
Course Objectives:	 The studer reactions in 2. The studer methods for 3. The studer 4. The studer importance 5. The studer application 	nts explain the s n inorganic chen entsexplain diff or calculating sta nts explain redox ents explain t e. ntsexplain differ n in various field	fundamentals of important mechanism of nistry. ferent ligandsubstitution reactions and bility constant of reactions. reactions. he photo-inorganic chemistry and its rent types of nuclear reactions and their s.

Course Content		
Uni t	Description	Weightage
		(%)
1.	Ligand substitution reactions of complexes Ligand substitution reactions, Classification of mechanism, Ligand substitution in square-planar complexes, Ligand substitution in octahedral complexes, Mechanism of in Ligand substitution reactions, Factors affecting Ligand substitution reactions, Stereochemistry in Ligand substitution reactions, Acid and base catalyzed hydrolysis of complexes, Isomerisation and racemization of octahedral complexes Reactions on coordinated ligands, Methods for Determining Stability Constants of Coordination Compounds such as spectrophotometry, Conductometry, Potentiometry and Polarography (Numerical Problems expected), Stability Constants of Mixed Ligand Complexes	25%
2.	Redox reactions of complexes Redox reactions, Classification of redox reactions, Reaction mechanism, Outer sphere electron transfer reactions, Inner sphere electron transfer reactions, Marcus theory, Two electron transfer reactions, Complementary and Noncomplementary reactions, Inorganic photochemical reactions, Adamson's rules, Oxidation and reduction of carbonyls.	25%
3.	Photo-inorganicChemistry Basics of photochemistry, quantum efficiencies and quantum yield, consequences oflightabsorption,luminescence,mutageniceffectofradiation,properties of the	25%

	excitedstates,excitedstatesofmetalcomplexes,ligandfieldphotochemistr y	
4.	Nuclear reactions Nuclear particles, Nuclear binding energy, Stability of nuclei, Nuclear fission, Nuclear fusion, Nuclear reactions, Radioactivity, Artificial radioactivity, Applications of radioactivity in analytical chemistry, biochemistry, Age determinations, Medical applications, Agricultural application and industrial applications.	25%

Teaching-	Classroom teaching, assignments, quizzes, and seminars
Learning	
Methodology	

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cou	Course Outcomes: Having completed this course, the learner will be able to	
1.	Explain the basic concepts of nuclear chemistry and reactions in inorganic compounds.	
2.	Acquire the knowledge of various ligand substitution reactions and calculation of stability constants.	
3.	Outline the mechanism of various redox reactions in coordination compounds.	
4.	Apply theoretical approach to substitution mechanism, and kinetic application of crystal field theory.	
5.	Acquire the knowledge of photo-inorganic chemistry.	

Suggested References:	
Sr. No.	References

1.	Inorganic Chemistry by Alan G. Sharpe, Pearson Pub.
2.	Nuclear Chemistry and its applications by M. Haissinky, Addison-Wesley Pub.
3.	Mechanism of Inorganic Reactions by F. Basolo and R. G. Persons, Wiley Pub.
4.	Reaction Mechanism of Coordination Compounds by C. H. Langford and H. B. Gray.
5.	Inorganic Reaction Mechanisms by M. L. Tobe, Nelson Pub.
6.	Inorganic Chemistry by K.F. Purcell and J. C. Kotz.
7.	Fundamental Principles of Inorganic Chemistry by D. Banerjea
8.	Inorganic Chemistry by Shriver and Atkins
9.	Inorganic Chemistry by James E. huheey, Ellen A. Keiter and Richard L. Keiter
10.	Essentials of Nuclear Chemistry by H. J. Arnikar, Wiley Eastern Limited, New Delhi
11.	Elements of Nuclear Chemistry by R. Gopalan, Vikas Publishing House Pvt.Ltd.
12.	Nuclear Chemistry, Bernard G. Harvey by Prentice - Hall, Inc., Englewood Cliffs, N.J.

On-line resources to be used if available as reference material

On-line Resources

www.nptel.ac.in

www.swayam.gov.in

www.epgp.inflibnet.ac.in (e-PG pathshala)

www.ndl.iitkgp.ac.in (National Digital Library)

Master of Science, Inorganic Chemistry M.Sc. Inorganic Chemistry, Semester (III)

Course Code	PS03CINC53	Title of the Course	Organometallic Compounds
Total Credits of the Course	4	Hours per Week	4
Course Objectives:	 The stude compound The stude reactivity of The stude catalysts in The studer involving of 	ents synthesize s. ents identify the of organometalli- ents apply orga n organic synthes nts explain mech organometallic c	e different types of organometallic e features influencing the stability and c compounds. nometallic compounds as reagents and sis, as medicine and in agriculture. nanism of industrially important reactions compounds as catalyst and reagent.

Course Content		
Unit	Description	Weightage* (%)
1.	Introduction to organometallic compounds: Introduction, classifications and general characteristics of organometallic compounds, Organometallic compounds of main group elements: ionic, σ -bonded and electron deficient Organometallic compounds, characteristics, stability, preparative methods, group trends and typical chemical reactions, Organometallic compounds of transition metals: σ -bonded organometallic compounds and π -bonded organometallic compounds, synthesis, properties and typical reactions	25%
2.	Synthetic and catalytic aspects of main group organometallic compounds: Synthetic applications of main group organometallic compounds as stochiometric reagents–organolithium, organosodium, organopotassium, organomagnesium, organozinc, organocadmium, organomercury, organoboranes, organoaluminium, organothalium, organosilicon and organotin, Catalytic applications of main group organometallic compounds	25%
3.	Transition metal organometallic compounds as catalysts and synthetic reagents: Catalytic processes involving transition metal organometallic compounds as homogeneous catalysts – hydrogenation, hydroformylation, oxidation, isomerization, dimerization and polymerization of alkenes and alkenes metathesis, Catalytic processes based on carbon monoxide and transition metal organometallic compounds as catalysts, Mechanism of reactions catalyzed by transition metal organometallics, Applications of transition metal	25%

	organometallic compounds as synthetic reagents	
4.	Biological application and environmental aspects of organometallic compounds: Introduction, Organometallics in medicine, Organometallics in agriculture and horticulture, Organometallics in industry, environmental aspects of organometallic compounds.	25%

Teaching-	Class room teaching, seminars, quizzes, and assignments
Learning	
Methodology	

Evaluation Pattern			
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

Cou	Course Outcomes: Having completed this course, the learner will be able to			
1.	Proceed for the preparation of different types of organometallic compounds.			
2.	Apply organometallic compounds as reagents and catalysts in organic synthesis.			
3.	Apply organometallic compounds in medicine and in agriculture.			
4.	Explain mechanism of catalysis of industrial processes involving organometallic compounds as reagent and catalyst.			

Suggested References:		
Sr. No.	References	
1.	Organometallic Compounds, Vol.1 & 2 by G.E. Coates, M.L.H. Green and K. Wade, Metheun & Co. Ltd. London EC4.	
2.	Organometallic Compounds by G.E. Coates, John Wiley & Sons, Inc., New York.	

3.	Organometallic Chemistry by H. Zeiss, Reinhold Publishing Corporation, New York.
4.	Organometallic Chemistry by R.C. Mehrotra & Anirudh Singh, New Age International (P) Limited, Publishers, New Delhi.
5.	Progress in Inorganic Chemistry, Vol. 1 by F.A. Cotton, Interscience, Pub.Inc., New York.
6.	Organotransition Metal Chemistry by John F. Hartwing, University Science Books, Sausalito, California.

On-line resources to be used if available as reference material

On-line Resources

www.nptel.ac.in

www.swayam.gov.in

www.epgp.inflibnet.ac.in (e-PG pathshala)

www.ndl.iitkgp.ac.in (National Digital Library)

Master of Science, Inorganic Chemistry M.Sc. Inorganic Chemistry, Semester (III)

Course Code	PS03CINC54	Title of the	Synthesis and structural characterization
Course Coue	(Practical)	Course	of coordination compounds
Total Credits	Л	Hours per	Q
of the Course	4	Week	0

Course Objectives:	 The students synthesize different types of coordination compounds. The students analyse the characteristics of coordination compounds
	by different techniques.3. The students apply various techniques to quantify the metal ions.

Course Content			
Description	Weightage* (%)		
 Synthesis and structural characterization of following coordination compounds 1. Synthesis of bis(salicylidene)ethylenediamine Co (II) complex. 2. Synthesis of bis(8-quinolinol)bis(benzylidene)ethane-1,2-diamine Ni(II) complex. 3. Synthesis of bis(8-quinolinol)bis(4-methoxybenzylidene)ethane-1,2-diamine Co(II) complex. 4. Synthesis of bis(8-quinolinol)bis(benzalidene)ethylenediamine Cu(II) complex. 5. Synthesis of bis(salicylidene) thiosemicarbazide Ni (II) (TSC) complex. 6. Synthesis of bis(salicylidene)bis(4-chlorobenzylidene)ethane-1,2-diamine Cu(II) complex. 7. Synthesis of bis(salicylidene)bis(4-chlorobenzylidene)ethane-1,2-diamine Cu(II) complex. 8. Synthesis of tris (acetylacetonato) Mn(III) chelate 9. Synthesis of bis(8-quinolinol)bis(4-hydroxy benzylidene)ethane-1,2-diamine Cu(II) complex. 10. Synthesis of bis(8-hydroxy quinoline)bis(4-chloro benzylidene)o-phenylenediamine with Cu(II) complex. 11. Synthesis of mercury tetrathiocyanate cobalt(II) 12. Miscellaneous 	100%		

Teaching- Learning	Laboratory exercises
Methodology	

Evaluation Pattern			
Sr. No.	Details of the Evaluation	Weightage	
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University Examination	70%	

Course Outcomes: Having completed this course, the learner will be able to

1.	Proceed for the synthesis	of different types of	coordination compounds.
	5	21	1

2. Determine the characteristics of coordination compounds by different techniques.

3. Analyze the metal ions by various techniques.

Suggested References:		
Sr. No.	References	
1.	Qualitative Chemical semimicro analysis by V. N. Alexeyev, Mir Publishers Moscow.	
2.	Vogel's Qualitative Inorganic Analysis by G. Svehla, Orent Longman, New Delhi.	
3.	Vogel's Textbook of Quantitative Chemical Analysis, 5 th edition by G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denney, ELBS Publication, 1996, Chapter 2, 3, 11.	

On-line resources to be used if available as reference material On-line Resources

www.nptel.ac.in

www.swayam.gov.in

www.epgp.inflibnet.ac.in (e-PG pathshala)

www.ndl.iitkgp.ac.in (National Digital Library)

Master of Science, Inorganic Chemistry M.Sc. Inorganic Chemistry, Semester (III)

Course Code	PS03CINC55	Title of the Course	Project work	
Total Credits	4	Hours per	4	
of the Course		week		
Course Objectives:	 The studer chemistry important storage ma The stude modernana The studer application The studer research and 	4 Week 4 The students apply theoretical knowledge of synthetic and analytical chemistry to synthesize and characterize the compounds/ materials important as drug delivery and release systems, adsorbents, gas storage materials, catalysts, etc. The students analyse the inorganic compounds/ materials using modernanalytical and spectroscopic techniques. The students applythe synthesized compounds/ materials for various applications. The students learn about research for pursuing higher studies in research and working in industry.		

Course Content	
Description	Weightage* (%)
Research work in laboratory on a topic given by the supervisor	100%

Teaching-	Laboratory exercise and thesis writing
Learning	
Methodology	

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Presentation and Viva-voce Examination (As per CBCS R.6.8.3)	30%
2.	University Examination	70%

Course Outcomes: Having completed this course, the learner will be able to proceed for literature survey, synthesis and characterization of inorganic compounds/ materials using modern analytical and spectroscopic techniques and their study for various applications. They will be trained in research for pursuing higher studies. They will get training for working in

research in academic and industries.

Suggested References: Published research articles on given research topic.

On-line resources to be used if available as reference material

Published papers by reputed publishers like American Chemical Society, Royal Society of Chemistry, Wiley, Elsevier, etc.

Master of Science, Inorganic Chemistry M.Sc. Inorganic Chemistry, Semester (III)

		Same chemise	() , (),	
Course Code	PS03CINC56	Title of the	Spectrophotometric techniques	
Course Coue	(Practical)	Course	Spectrophotometric techniques	
Total Credits	Λ	Hours per	0	
of the Course	4	Week	8	
Course	1. The stude	ents analyze t	he characteristics and composition of	
Objectives:	complexes	by spectrophoto	ometeric techniques.	
	2 The stud	ante annly er	actrophotometeric techniques for the	

2. The students apply spectrophotometeric techniques for the determination of the amount of metals in solutions.

Course Content	
Description	Weightage* (%)
Spectrophotometric techniques	100%
1. Determine the composition of the complexes formed in the system Fe(III) salicaldehyde in acidic medium pH-2 by mole ratio method.	
 Determine the nature of the complexes formed in the system Cu(II) 	
ethylene diamine in water. 2 Determine the nature of the complexes formed in the system Ni(II)	
ethylene diamine in water.	
 Determine the nature of the complexes formed in the system Fe(III) salicaldehyde/5- suphosalicylic acid in acidic medium (0.01M W.R.T 	
HNO_3) using spectrophotometric method.	
ethylene diamine in acidic medium pH-2 by slope ratio method.	
6. Determine the composition of the complexes formed in the system Ni(II)	
ethylene diamine in acidic medium pH-2 by slope ratio method.	
7. Determine the composition of the complexes formed in the system Fe(III)	
ethylene diamine in acidic medium pH-2 by slope ratio method.	
8. Determine the composition of the complexes formed in the system Cu(II)	
ethylene diamine in acidic medium pH-2 by mole ratio method.	
9. Determine the composition of the complexes formed in the system Ni(II) ethylene diamine in acidic medium pH 2 by mole ratio method	
10 Determine the stability constant of the complexes formed in the system	
$C_{\rm U}({\rm II})$ ethylene diamine by Job's method of continuation variation	
11 Determine the stability constant of the complexes formed in the system	
Ni(II) ethylene diamine by Job's method of continuation variation	
12. Determine the stability constant of the complexes formed in the system	
Fe(III) salicaldehyde/5-suphosalisylic acid in acidic medium(pH-2) by	
Job's method of continuation variation.	
13. Determine spectrophotometrically the pK value of an indicator (the acid	
dissociation constant of methyl red.	
14. Determination of concentration of cobalt and chromium in a given	
mixture of the sample.	
15. Miscellaneous	

Teacl Learr Meth	ning- ning odology	ng- Ig lology		
Evalu	ation Pattern	n		
Sr. No.	Details of t	he Evaluation	Weightage	
1.	Internal W1	ritten / Practical Examination (As per CBCS R.6.8.3)	15%	
2.	Internal Co Quizzes, Se	ontinuous Assessment in the form of Practical, Viva-voce, eminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%	
3.	University	Examination	70%	
Cours	se Outcomes	: Having completed this course, the learner will be able to		
1.	Analyze the properties and composition of different types of complexes by spectrophotometeric techniques.			
2.	Determine th	ne amount of metals in solutions.		
Sugg	ested Refere	nces:		
Sr. No.	References			
1.	Modern Analytical Chemistry, 1 st Edition by D. Harvey, The McGraw-Hill Pub, 2000.			
2.	Instrumental Methods of Analysis, 4 th edition by G.W. Ewing, McGraw Hill Ltd., 1970.			
3.	Physical Methods in Inorganic Chemistry by R. S. Drago, John-Wiley Pub., 1975.			
On-line resources to be used if available as reference material				
On-line Resources				
www.nptel.ac.in				
www.swayam.gov.in				
www.epgp.inflibnet.ac.in (e-PG pathshala)				
www.ndl.iitkgp.ac.in (National Digital Library)				

Master of Science, Inorganic Chemistry M.Sc. Inorganic Chemistry, Semester (III)

Course Code	PS03CINC57	Title of the Course	Project work
Total Credits of the Course	4	Hours per Week	4
Course Objectives:	 The studer chemistry important storage ma The stude modern an The studer application The stude research an 	 The students apply theoretical knowledge of synthetic and analytical chemistry to synthesize and characterize the compounds/ materials important as drug delivery and release systems, adsorbents, gas storage materials, catalysts, etc. The students analyse the inorganic compounds/ materials using modern analytical and spectroscopic techniques. The students apply the synthesized compounds/ materials for various applications. The students learn about research for pursuing higher studies in research and working in industry. 	

Course Content	
Description	Weightage* (%)
Research work in laboratory on a topic given by the supervisor	100%

Teaching-	Laboratory exercise and thesis writing
Learning	
Methodology	

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Presentation and Viva-voce Examination (As per CBCS R.6.8.3)	30%
2.	University Examination	70%

Course Outcomes: Having completed this course, the learner will be able to proceed for literature survey, synthesis and characterization of inorganic compounds/ materials using modern analytical and spectroscopic techniques and their study for various applications. They will be trained in research for pursuing higher studies. They will get training for working in

research in academic and industries.

Suggested References: Published research articles on given research topic.

On-line resources to be used if available as reference material

Published papers by reputed publishers like American Chemical Society, Royal Society of Chemistry, Wiley, Elsevier, etc.

Master of Science, Inorganic Chemistry M. Sc. Inorganic Chemistry, Semester – III

Course Code	PS03CINC58	Title of the \tilde{a}	Comprehensive Viva
		Course	
Total Credits	01	Hours per	01
of the Course	01	Week	01
	1		
Course Objectives:	To assess the overall knowledge of the student in the relevant subjects covered in core as well as elective courses.		

PROGRAMME STRUCTURE Master of Science in Chemistry MSc (Inorganic Chemistry) Semester: IV

Programme Outcome (PO) - For MSc Chemistry Programme	 Master of Science program provides extended theoretical and practical knowledge of different science subjects. Master of Science programme at Sardar Patel University is designed keeping the overall back ground preparation in mind for the student to either seek a job or to become an entrepreneur. The students, after completion of Bachelor of Science can select the master's programme in the subject they have had at the final year or in a related discipline (depending upon eligibility criteria prescribed by university). Programme outcomes: At the end of the program, the students will be able to Have a deep understanding of both the theoretical and practical concepts in the respective subject. Understand laboratory processes and use scientific equipments and work independently. Develop research temperament as a consequence of their theory and practical learning. Communicate scientific information in oral and written form. Understand the issues related to nature and environmental contexts and think rationally for sustainable development. The students are able to handle unexpected situations by critically analyzing the problem.
Programme Specific Outcome (PSO) - For MSc Chemistry Semester - IV	 Students will have a firm foundation in the fundamentals and application of current chemical and scientific theories including those in Analytical Inorganic Chemistry, Organic Chemistry, Physical Chemistry, Chemistry and Industrial polymer Chemistry. After completing M.Sc. chemistry program, students will be able to: Demonstrate and apply the fundamental knowledge of the basic principles in various fields of Chemistry. Apply knowledge to build up small scale industry for developing endogenous product. Collaborate effectively on team-oriented projects in the field of chemistry or other related fields. Communicate scientific information in a clear and concise manner both orally and in writing. Inculcate logical thinking to address a problem and become result oriented with a positive attitude.

■ Enhance the scientific temperament among the students so as to develop a research culture and
implementation of the policies to tackle the burning issues at global and local level.
Apply the knowledge to develop the sustainable and eco-friendly technology.
■ Take up global level research opportunities to pursue Ph.D programme targeted approach and specific
competitive exams conducted by service commission
Accept enormous job opportunities at all level of chemical industries, pharmaceutical industries and
placements in R & D.

To Pass	At least 40% Marks in the University Examination in each paper and 40% Marks in the aggregate of University and Internal
	examination in each course of Theory, Practical & 40% Marks in Viva-voce.

			Type of			Hours	Exam	Component of Marks		Marks
Course Type	Course Code	Name of	course	Т		per	Durati	Intern	Extern	Total
		Course		/ P	Credit	Week	on in	al	al	
							hrs	Total/	Total/	Total/
								Passing	Passing	Passing
	PS04CINC51	Spectroscopy II	EM &	Т	4	4	3	30/10	70/28	100/40
Core Course			EN							
	PS04CINC52	Solid State Chemistry and Supra Molecular	EM	Т	4	4	3	30/10	70/28	100/40
		Chemistry								
	PS04CINC53	Bioinorganic Chemistry	EM	Т	4	4	3	30/10	70/28	100/40
Core Course	PS04CINC54	Practical OR	EM&SD	Р	4	8	6	30/10	70/28	100/40
(Any One)	PS04CINC55	Project	EM&SD	Р	4	8		30/10	70/28	100/40
Core Course	PS04CINC56	Practical OR	EM&SD	Р	4	8	6	30/10	70/28	100/40
(Any One)	PS04CINC57	Project	EM&SD	Р	4	8		30/10	70/28	100/40
Core Course PS04CINC58 Comprehensive Viva			-	1	1			50/20	50/20	
Elective Course (Any one)	PS04ECHE51	Environmental Chemistry and analysis	EM& EN	Т	4	4	3	30/10	70/28	100/40
	PS04ECHE52	Analysis of Pharmaceuticals drugs	EM& EN	Т	4	4	3	30/10	70/28	100/40
	PS04ECHE53	Selected Topics in Advanced Inorganic	EM& EN	Т	4	4	3	30/10	70/28	100/40
		Chemistry-II								

	PS04ECHE54	Inorganic Polymers and Inorganic Materials	EM& EN	Т	4	4	3	30/10	70/28	100/40
	PS04ECHE55	Selected Topics in Polymers-III	EM& EN	Т	4	4	3	30/10	70/28	100/40
	PS04ECHE56	Selected Topics in Polymers- II	EM& EN	Т	4	4	3	30/10	70/28	100/40
	PS04ECHE57	Surface Chemistry and Catalysis	EM& EN	Т	4	4	3	30/10	70/28	100/40
	PS04ECHE58	Introduction to Different Materials	EM& EN	Т	4	4	3	30/10	70/28	100/40
	PS04ECHE59	Topics in Organic Chemistry	EM&	Т	4	4	3	30/10	70/28	100/40
			EN							
	PS04ECHE60	Applied Organic Chemistry	EM&	Т	4	4	3	30/10	70/28	100/40
			EN							
					25					650
Add-on Course		MOOCs co	ourse from Sy	wayam	Portal					

EMPLOYABILITY = EM, ENTREPRENEURSHIP = EN and SKILL DEVELOPMENT = SD

* Project work (as optional) in place of practicals; to be offered to some of the students, based on their merit, interest and placement with the teachers (Marks : 200). The project shall have to be carried out under the allotted teacher(s) and a dissertation shall be submitted and will be assessed for internal (60 marks) and external (140 marks), in the usual manner.

Master of Science, Inorganic Chemistry M.Sc. Inorganic Chemistry, Semester (IV)

Course Code	PS04CINC51	Title of the Course	Spectroscopy-II
Total Credits of the Course	4	Hours per Week	4
Course Objectives:	 The study microscop materials. The study quantitativ The study The study The study 	ents explain t ic techniques ents apply spect re analysis of inconts analyse spect ents predict th ic techniques in	he theory of spectroscopic and and used for characterization of inorganic troscopic techniques for qualitative and organic substances. ral data to characterize inorganic species. e possible uses of spectroscopic and material characterization.

Course	Course Content				
Unit	Description	Weightage* (%)			
1.	Atomic Absorption/Atomic and Flame Emission Spectroscopy Absorption of radiation by atoms; equipment: radiation sources (Hollow cathode lamps and electrode less discharge lamps); atomizers (Flame and carbon); wavelength selector and detectors; interferences in atomic absorption spectroscopy; applications and problems: qualitative and quantitative analysis. Introduction to plasma, arc and spark emission spectroscopy; equipment: inductively coupled plasma spectrometer and flame photometer; applications and problems	25%			
2.	Mossbauer Spectroscopy Mossbauer effect, and experimental methods, hyperfine interactions, molecular structure, electronic structure, applications of Mossbauer spectroscopy	25%			
3.	Electron Spectroscopy Introduction, principle and theory of electron spectroscopy, Notations, X-ray Photoelectron Spectroscopy (XPS), Ultraviolet Photoelectron Spectroscopy (UPS), Auger Electron Spectroscopy (AES), Instrumentation of electron spectroscopy, Qualitative and Qualitative analysis by electron spectroscopy, Chemical shifts, Unwanted features in electron spectra, Applications of electron spectroscopy	25%			
4.	Microscopic Techniques Introduction to scanning electron microscopy (SEM), Scanning tunneling microscopy (STM) and atomic force microscopy (AFM), basic principles and theory,	25%			

instrumentation and operating parameters and applications

Teaching-	Class room teaching, seminars, quizzes, and assignments
Learning	
Methodology	

Evalu	Evaluation Pattern				
Sr. No.	Details of the Evaluation	Weightage			
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%			
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%			
3.	University Examination	70%			

Cou	rse Outcomes: Having completed this course, the learner will be able to
1.	Explain the theory and instrumentation of important spectroscopic techniques such as Atomic Absorption Spectroscopy, Mossbauer Spectroscopy and Electron Spectroscopy, and microscopic techniques.
2.	Apply spectroscopic and microscopic techniques for characterization of inorganic materials.
3.	Analyse spectroscopic and microscopic data of inorganic substances.
4.	Acquire the knowledge of instrumentation of various modern spectrometers.

Sugges	Suggested References:				
Sr. No.	References				
1.	Principles of Instrumental Analysis by Skoog, Holler and Neiman, Sunders College Publishers (USA).				
2.	Undergraduate Instrumental Analysis by James W. Robinson, Marcel Dekker, Inc. (Ny.)				
3.	Introduction to Instrumental Analysis by Robert D. Braun, Pharma Med Press Hyderabad- India.				

4.	Instrumental Method of Analysis by Willard, Merritt, Jr., Dean and Settle Jr., CBS Publishers and distributors, New Delhi, India.
5.	Microscopic and Spectroscopic Imaging of the Chemical State by Michael D. Morris, Marcel Dekker, Inc. (NY.).
6.	Instrumental Methods of Chemical Analysis, 24 th Edition 2005 by B. K. Sharma, Goel Publishing House, Meerut.

On-line resources to be used if available as reference material

On-line Resources

www.nptel.ac.in

www.swayam.gov.in

www.epgp.inflibnet.ac.in (e-PG pathshala)

www.ndl.iitkgp.ac.in (National Digital Library)

Master of Science, Inorganic Chemistry

M.Sc. Inorganic Chemistry, Semester (IV)

Course Code	PS04CINC52		Title of the Course	Solid State and Supramolecular Chemistry
Total Credits of the Course		4	Hours per Week	4
Course Objectives:	1. 2. 3. 4. 5. 6.	The studer and types of The stude crystals, in defects, Sc The stude photoelect The stude application The studen The studen compound	nts explaincrysta of lattices. entsexplainthe contrinsic and extri- chottky defects and ents know option ric effects. lents apply success as. atsexplainthe prim ts explainthe class s and cation, ani	l systems, crystal classes, lattice structure classification of perfect and imperfect nsic defects, point defects, line and plane nd Frenkel defects. tical reflectance, photoconduction and upramolecular chemistry for various nciples and types of solid-state reactions. assification of supramolecular Host-Guest on and neutral binding hosts.

Course Content		
Unit	Description	Weightage* (%)
1.	Solid State Chemistry Classification of Solids, Symmetry In Crystals, Crystallography and Its Law, Interfacial Angles, Miller Indices, And Bravais Lattices, Crystal Lattice and Unit Cell, Packing In Solids (Simple, FCC, BCC and HCP Lattices), Radius ratio, Efficiency, Voids, Density, Radii, and Coordination Number, Bragg's Equation and Its Application, Separation of Planes, Electron Neutron Diffraction, Imperfection In Solids (All Defects), Band Model and Bonding In Metals	25%
2.	Optical Properties: Optical reflectance, photoconduction and photoelectric effects, Lasers, Organic solids – electrically conducting solids, organic charge transfer complex, organic metals, new superconductors Solid State Reactions: General Principles, types of solid-state reactions, experimental procedures, co-precipitation as a precursor to solid state reactions, Wagner mechanism of solid-state reactions, sol- gel method, kinetics of solid-state reactions	25%
3.	Basics of Supramolecular Chemistry Definition and development of supramolecular chemistry, Classification of supramolecular Host-Guest compounds, Receptors,	25%

	coordination and lock and key analogy, Binding constants, Cooperativity and the chelate effect, Preorganization and complementarity, Thermodynamic and kinetic selectivity and discrimination, Nature of supramolecular interactions, Solvation and hydrophobic effects, Supramolecular concepts and design	
4.	Cation binding hosts Selectivity of cation complexation, Soft ligands for soft metals, Different cation binding hosts Anion binding hosts Introduction, From cation hosts to anion hosts- a simple change in pH, Some anion hosts Binding of neutral molecules Interactivity complexes of neutral molecules: solution and solid-state binding, Some neutral binding hosts	25%

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cou	rse Outcomes: Having completed this course, the learner will be able to
1.	Understand crystal systems, crystal classes, lattice structure and types of lattices.
2.	Know the classification of perfect and imperfect crystals, intrinsic and extrinsic defects, point defects, line and plane defects, Schottky defects and Frenkel defects.
3.	Learn and appraise optical reflectance, photoconduction and photoelectric effects.
4.	Acquire the knowledge of development of supramolecular chemistry.
5.	Explain the principles and types of solid-state reactions.

6. Explain the classification of supramolecular Host-Guest compounds and cation, anion and neutral binding hosts.

Suggested References:	
Sr. No.	References
1.	Principles of Inorganic Chemistry by Puri, Sharma and Pathania.
2.	Introduction to Solids by L. V. Azaroff, McGraw Hill Co., New York
3.	Principles of the Solid State by H. V. Kheer, Wiley Eastern
4.	Solid State Chemistry by D. K. Chakrabarthy by New Age International
5.	Solid State Chemistry and Its Applications by Anthony R. West, John Willey & Sons
6.	Crystal – Structural Analysis by M. J. Buerger, John Wiley and Sons, New York
7.	Elements of X-ray Diffraction by B. D. Cullity Addision – Wesley Publ. Co., London
8.	Supramolecular Chemistry by Jonathan W. Steed, Jerry L. Atwood, John Wiley & Sons, Ltd.
9.	Supramolecular Chemistry- Fundamentals and Applications by Katsuhiko Ariga, Toyoki Kunitake Springer

On-line resources to be used if available as reference material

On-line Resources

www.nptel.ac.in

www.swayam.gov.in

www.epgp.inflibnet.ac.in (e-PG pathshala)

www.ndl.iitkgp.ac.in (National Digital Library)

		ninget mo	guine chempe	j, Semester (I v)
Course Code	PS04	CINC53	Title of the Course	Bioinorganic Chemistry
Total Credits of the Course		4	Hours per Week	4
Course Objectives:	1.	The studer their biolog	nts identify the original roles.	elements important in living systems and
	2.	The stude carboxy pe	entsexplainthe r eptidases.	nechanism of carbonic anhydrase and
	3.	The stude systems.	nts explainthe o	electron transfer processes in biological
	4.	The studen	nts knowthe impo	ortant role of metals in medicine.
	5.	The studen for neurolo	nts study the chogical disorders,	elation therapy for detoxification, Drugs arthritis antibiotics and MRI agents.
	6.	The studer fluorescent activity rel DNA.	nts learn the meta ce quenching in lationship, mech	al- nucleic acid interactions, application of drug-DNA binding studies and structure anism of action, aspects of Pt binding to
	7.	The studen	nts learn nonplati	num antitumor metal complexes.

Master of Science, Inorganic Chemistry M.Sc. Inorganic Chemistry, Semester (IV)

Cou	rse Content			
Un it	Description			
		(%)		
1.	BioinorganicChemistry-1	25%		
	Theelementsoflivingsystem: Thebiological roles of metalions, Calciumbioche			
	mistry: Biochemical roles of Calcium, Intracellular Calcium binding			
	proteins, Role of extracellular Calcium binding proteins, Ironbiochemistry:			
	Types of Heme, Cytochrome P-450 and its enzymatic activity, Catalase			
	and peroxidase activity, Iron sulphur proteins.			
2.	BioinorganicChemistry-II	25%		
	Zincbiochemistry: Carbonicanhydrase,Carboxypeptidases,			
	Copperbiochemistry: Blue copper proteins, Cobaltbiochemistry: Vitamin			
	B12, Coenzyme B ₁₂ , Roles of Vitamin B12, Effect ofdeficiency and			
	excess of essential metal ions,			
	anddiseases, chelation therapy formetalion detoxification, chelating ligands			
	as drugs.			
1				

3	MetalionsandcomplexesinMedicine_I	25%			
5.	Lithiumdrugsinneurologicaldisorders.goldantiarthritisdrugs.pharmacology				
	ofauranofin,Roleof metal ions in the action of antibiotics, Metal ions in				
	clinical diagnosis: MRI agentsRadiopharmaceuticals:UseofTc, Re, Sm,Sr,				
	Ga,Co,andIisotopes.				
4.	MetalionsandcomplexesinMedicine-II	25%			
	Metal- nucleic acid interactions: Coordination, Non-covalent interactions -				
	intercalationand hydrogen bonding, hydrophobic interactions, DNA strand				
	cleavage, Applicationoffluorescencequenchingindrug-				
	DNAbindingstudies.DNAbinding and mechanistic possibility, Platinum				
	anticancer drugs, structure activityrelationship, mechanism of action,				
	aspects of Pt binding to DNA, Nonplatinum antitumor metal				
	complexes:Ruthenium complexes in cancer therapy, DNAbinding and				
	cleavage, Anticancer activity of metallocenes, Structure and				
	$chemical properties of streptonigrin and its metal complexes, antitum or activity a {\it streptonic streptonic$				
	nd mechanism.				

Teaching-	Class room teaching, seminars, quizzes, and assignments
Learning	
Methodology	

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Course Outcomes: Having completed this course, the learner will be able to	
1.	Know the elements important in living systems and their biological roles.
2.	Explain the mechanism of carbonic anhydrase and carboxy peptidases.

3.	Explainthe electron transfer processes in biological systems.		
4.	Acquire the knowledge of important role of metals in medicine.		
5.	Know chelation therapy for detoxification, Drugs for neurological disorders, arthritis antibiotics and MRI agents.		
6.	Learn the metal- nucleic acid interactions.		
7.	Apply fluorescence quenching in drug-DNA binding studies.		
8.	Learn the structure activity relationship, mechanism of action, aspects of Pt binding to DNA.		
9.	Know about nonplatinum antitumor metal complexes.		

Suggested References:		
Sr. No.	References	
1.	Elements of Bioinorganic Chemistry, G.N. Mukherjee and Arabinda Das	
2.	Bioinorganic Chemistry, G. R. Chatwal and A. K. Bhagi	
3.	Principles of Bioinorganic Chemistry, S.J. Lippard and J. M. Bersa	
4.	Inorganic Chemistry, James E. huheey, Ellen A. Keiter and Richard L. Keiter	
5.	Bio-inorganic Chemistry, R.W. Hay – R.W. Hay, Ellis Horwood Limited Publishers chichester 1984	
6.	Metal ions in Biological Systems Ed by H. Sigel Vol I to XIX, Marcel Dekker, Basel	
7.	Principles of Bio Inorganic Chemistry, S. J. Lippard and J. M. Berg, University Science Books 199.	
8.	Facets of coordination chemistry Ed by B.V. Agarwal & K.N. Munshi, World Scientific, Singapore, NJ, London.	
9.	Bioinorganic Chemistry, Bertini, Gray, Lippard, & Valentine Viva books pvt ltd (1998)	
10.	Bioinorganic Chemistry an introduction, J.A. Cowan, Wiley-VCH	

On-line resources to be used if available as reference material

On-line Resources

www.nptel.ac.in

www.swayam.gov.in

www.epgp.inflibnet.ac.in (e-PG pathshala)

www.ndl.iitkgp.ac.in (National Digital Library)

Master of Science, Inorganic Chemistry M.Sc. Inorganic Chemistry, Semester (IV)

Course Code	PS04CINC54 (Practical)	Title of the Course	Ores analysis
Total Credits of the Course	4	Hours per Week	8
Course Objectives:	 The students analyze different ore samples. The students analyse the percentage of various metal ions in inorganic samples. The students analyze metal ions from the industrial waste. The students analyze inorganic samples such as silical cement, etc. 		

Course Content		
Description	Weightage* (%)	
 Analysis of Hematite Acid insoluble residue Iron as Fe₂O₃ Iron by redox method (volumetrically) Determine the amount of Ca(II), Mg(II), Fe(III) and Carbonate in the given sample of Dolomite ore. Determine the amount of Ca(II), Mg(II), Fe(III) and Carbonate in the given sample of Pyrolusite Acid insoluble residue Iron as Iron oxide Mn by using EDTA MnO₂ oxalic acid method/Iodometric method To analyze the given sample of Galena ore. Determine the amount of Sulphur as BaSO₄ Determine the amount of Al and Fe in the given sample of Bauxite ore Al as Al₂O₃ Fe as Fe₂O₃ Analysis of Industrial waste Determination of Calcium fluoride, Calcium and Carbonate from Industrial waste Analysis of Cement: (White/Black Cement)	100%	

Teaching-Learning Methodology

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Cou	Course Outcomes: Having completed this course, the learner will be able to		
1.	Analyze different ore samples.		
2.	Analyse the percentage of various metal ions in inorganic samples and in the industrial waste.		

Suggested References:

Г

Sr. No.	References
1.	Qualitative Chemical semimicro analysis by V. N. Alexeyev, Mir Publishers Moscow.
2.	Vogel's Qualitative Inorganic Analysis by G. Svehla, Orent Longman, New Delhi.
3.	Vogel's Textbook of Quantitative Chemical Analysis, 5 th edition by G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denney, ELBS Publication, 1996, Chapter 2, 3, 11.

On-line resources to be used if available as reference material

On-line Resources

www.nptel.ac.in

www.swayam.gov.in

www.epgp.inflibnet.ac.in (e-PG pathshala)

www.ndl.iitkgp.ac.in (National Digital Library)

Master of Science, Inorganic Chemistry M.Sc. Inorganic Chemistry, Semester (IV)

Course Code	PS04CINC55	Title of the Course	Project work	
Total Credits	4	Hours per Week	4	
of the Course		WEEK		
Course Objectives:	 The studer chemistry important storage ma The stude modern an The studer application The stude research an 	 Week Week The students apply theoretical knowledge of synthetic and analytical chemistry to synthesize and characterize the compounds/ materials important as drug delivery and release systems, adsorbents, gas storage materials, catalysts, etc. The students analyse the inorganic compounds/ materials using modern analytical and spectroscopic techniques. The students apply the synthesized compounds/ materials for various applications. The students learn about research for pursuing higher studies in research and working in industry. 		

Course Content	
Description	Weightage* (%)
Research work in laboratory on a topic given by the supervisor	100%

Teaching-	Laboratory exercise and thesis writing
Learning	
Methodology	

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Presentation and Viva-voce Examination (As per CBCS R.6.8.3)	30%
2.	University Examination	70%

Course Outcomes: Having completed this course, the learner will be able to proceed for literature survey, synthesis and characterization of inorganic compounds/ materials using modern analytical and spectroscopic techniques and their study for various applications. They will be trained in research for pursuing higher studies. They will get training for working in

research in academic and industries.

Suggested References: Published research articles on given research topic.

On-line resources to be used if available as reference material

Published papers by reputed publishers like American Chemical Society, Royal Society of Chemistry, Wiley, Elsevier, etc.

Master of Science, Inorganic Chemistry M.Sc. Inorganic Chemistry, Semester (IV)

(1) Set Hot guile Chemistry, Semester (1)				
Course Code	PS04CINC56	Title of the	Allove analysis	
Course Coue	(Practical)	Course	Anoys anarysis	
Total Credits	Л	Hours per	0	
of the Course	4	Week	8	
Course 1. The students analyze different alloys such as German silve				
Objectives:	BRONZE, Solder, Brass, Steel, Aluminum, etc.			
· ·	2. The students analyze the purity of sample having multi metal ions			
	using different techniques.			

Course Content		
Description		Weightage* (%)
	 Analysis of German silver Analysis of BRONZE Analysis of Solder Analysis of Brass Analysis of Steel Analysis Aluminum alloy Percentage of metal ions in given mixtures Miscellaneous 	100%
Teaching- Learning Methodology	Laboratory exercises	

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Written / Practical Examination (As per CBCS R.6.8.3)	15%
2.	Internal Continuous Assessment in the form of Practical, Viva-voce, Quizzes, Seminars, Assignments, Attendance (As per CBCS R.6.8.3)	15%
3.	University Examination	70%

Course Outcomes: Having completed this course, the learner will be able to

1. Analyze different alloys such as German silver, BRONZE, Solder, Brass, Steel, Aluminum, etc.

2. Analyze the purity of sample having multi metal ions using different techniques.

Suggested References:		
Sr. No.	References	
1.	Modern Analytical Chemistry, 1 st Edition by D. Harvey, The McGraw-Hill Pub, 2000.	
2.	Instrumental Methods of Analysis, 4 th edition by G.W. Ewing, McGraw Hill Ltd., 1970.	
3.	Physical Methods in Inorganic Chemistry by R. S. Drago, John-Wiley Pub., 1975.	

On-line resources to be used if available as reference material

On-line Resources

www.nptel.ac.in

www.swayam.gov.in

www.epgp.inflibnet.ac.in (e-PG pathshala)

www.ndl.iitkgp.ac.in (National Digital Library)

Master of Science, Inorganic Chemistry M.Sc. Inorganic Chemistry, Semester (IV)

Course Code	PS04CINC57	Title of the Course	Project work
Total Credits of the Course	4	Hours per Week	4
Course Objectives:	 The studer chemistry important storage ma The stude modern an The studer application The studer research an 	Course Froject work Hours per Week 4 ents apply theoretical knowledge of synthetic and analyze to synthesize and characterize the compounds/ materials to synthesize and characterize the compounds/ materials, catalysts, etc. ents analyse the inorganic compounds/ materials to nalytical and spectroscopic techniques. ents apply the synthesized compounds/ materials for values. ents learn about research for pursuing higher studie and working in industry.	

Course Content	
Description	Weightage* (%)
Research work in laboratory on a topic given by the supervisor	100%

Teaching-	Laboratory exercise and thesis writing
Learning	
Methodology	

Evaluation Pattern		
Sr. No.	Details of the Evaluation	Weightage
1.	Internal Presentation and Viva-voce Examination (As per CBCS R.6.8.3)	30%
2.	University Examination	70%

Course Outcomes: Having completed this course, the learner will be able to proceed for literature survey, synthesis and characterization of inorganic compounds/ materials using modern analytical and spectroscopic techniques and their study for various applications. They will be trained in research for pursuing higher studies. They will get training for working in

research in academic and industries.

Suggested References: Published research articles on given research topic.

On-line resources to be used if available as reference material

Published papers by reputed publishers like American Chemical Society, Royal Society of Chemistry, Wiley, Elsevier, etc.

Master of Science, Inorganic Chemistry M. Sc. Inorganic Chemistry, Semester – IV

Course Code	DS04CINIC59	Title of the	Comprehensive Viva
	r SU4CIINCJ6	Course	
Total Credits	01	Hours per	01
of the Course	01	Week	01
Course Objectives:	To assess the overall knowledge of the student in the relevant subjects covered in core as well as elective courses.		
