Q.1 Answer the following questions by selecting the most appropriate [10] option. Write down the option in your answer book.

(1) If \(y = 7^{5x} \) then \(y'_n = \)______.
 (a) \(5^n 7^{5x} \)
 (b) \(7^n (\log 5)^n 7^{5x} \)
 (c) \(7^n \cdot 7^{5x} \)
 (d) \(5^n (\log 7)^n \cdot 7^{5x} \)

(2) If \(y = e^{x} \) then \(y^{16}=\)______.
 (a) 0
 (b) \(e^x \)
 (c) 1
 (d) \(e^{-x} \)

(3) If \(y = \cos(3x) \) then \(y^{n}=\)______.
 (a) \(3^n \cos(3x+\frac{n\pi}{2}) \)
 (b) \(3^n \cos(3x+\frac{\pi}{2}) \)
 (c) \(3^n \sin(3x+\frac{n\pi}{2}) \)
 (d) \(3^n \sin(3x+\frac{\pi}{2}) \)

(4) \(\sqrt{1+(\frac{dy}{dx})^2} = \)______.
 (a) \(\rho \)
 (b) \(\frac{1}{\rho} \)
 (c) \(\frac{ds}{dx} \)
 (d) \(\frac{ds}{dy} \)

(5) For a polar curve, \(\rho = \)______.
 (a) \(\frac{(r^2 + r_1^2)^{\frac{3}{2}}}{r^2 + 2r_1^2 - rr_2} \)
 (b) \(\frac{(r^2 + r_2^2)^{\frac{3}{2}}}{r^2 + 2r_2^2 - rr_2} \)
 (c) \(\frac{(1+r_2^2)^{\frac{3}{2}}}{r_2} \)
 (d) \(\frac{(1+r_1^2)^{\frac{3}{2}}}{r_1} \)

(6) \(\frac{\partial}{\partial x} (\frac{\partial z}{\partial y}) = \)______.
 (a) \(\frac{\partial z}{\partial y} \)
 (b) 0
 (c) \(\frac{\partial^2 x}{\partial y \partial x} \)
 (d) \(\frac{\partial^2 z}{\partial x \partial y} \)
(7) For a function y of x implicitly described by \(f(x, y) = c \), \(\frac{dy}{dx} = \) \[\text{_____} \].

(a) \(\frac{f_x}{f_y} \)
(b) \(\frac{f_y}{f_x} \)
(c) \(-\frac{f_x}{f_y} \)
(d) \(-\frac{f_y}{f_x} \)

(8) In usual notations, \(\frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = \) \[\text{_____} \].

(a) \(\frac{dz}{dx} \)
(b) \(\frac{dz}{dt} \)
(c) \(\frac{dz}{dy} \)
(d) \(\frac{dy}{dx} \)

(9) The notation \(p = \) \[\text{_____} \].

(a) \(\frac{\partial y}{\partial x} \)
(b) \(\frac{\partial x}{\partial y} \)
(c) \(\frac{dy}{dx} \)
(d) \(\frac{dx}{dy} \)

(10) The general solution of the differential equation \(y = px + \frac{5}{p} \) is \[\text{_____} \].

(a) \(y = x + 5 \)
(b) \(y = cx + \frac{5}{c} \)
(c) \(cx + \frac{5}{c} = 0 \)
(d) \(y = cp + \frac{5}{c} \)

Q.2 Write down any answer of Any Ten questions in short. \[20\]

1. If \(y = e^{mx} \), then prove that \(y_n = m^n e^{mx} \).
2. If \(y = \sin(ax+b) \) then find \(y_n \).
3. Find \(\phi \) for the curve \(r = a(1 + \cos \theta) \).
4. Find \(\rho \) for \(r = a \theta \).
5. Find \(\frac{ds}{dx} \) for \(y = a \cosh + \frac{x}{a} \).
6. Find the point of intersection of \(r = a(1 + \cos \theta) \) and \(r = -a \cos \theta \).
7. State theorem on total differential.
8. Define: Homogeneous function
9. State Euler's theorem for function of two variables.
10. Examine whether \((x^2 - 2xy - y^2)dx - (x + y)^2 dy = 0 \) is exact or not.
11. Define: Exact Differential Equation
12. Solve: \(\sin px \cos y = \cos px \sin y + p \)

Q.3

(a) State and prove Leibnitz's theorem. \[05\]

(b) For \(y = \log(ax + b) \), prove that \(y_n = \frac{(-1)^{n-1}(n-1)!a^n}{(ax + b)^n} \) \[05\]

OR

2
Q.3
(a) In usual notations prove that, \(\tan \theta = \frac{r}{d \theta} \). \[05\]
(b) If \(x = \cos(\frac{1}{m} \log y) \) then find \(y_n(0) \). \[05\]

Q.4
(a) Find the length of arc of the parabola \(y^2 = 4ax \) (a>0) measured from the vertex to one extremity of its latus rectum. \[05\]
(b) Find the intrinsic equation of the cardioid \(r=a(1+\cos \theta) \). Hence prove that \(s^2 + 9\rho^2 = 16a^2 \), where \(\rho \) is the radius of curvature at any point of the curve. \[05\]

OR

Q.4
(a) Show that the radius of curvature at any point of the curve \(x = ae^\theta (\cos \theta - \sin \theta), y = ae^\theta (\sin \theta + \cos \theta) \) is twice the perpendicular distance of the tangent at the point from the origin. \[05\]
(b) Show that the intrinsic equation of the curve \(y^3 = ax^2 \) is \(27s = 8a(\sec^3 \psi - 1) \). \[05\]

Q.5
(a) State and prove Euler's theorem for homogeneous function of three variables. \[05\]
(b) If \(z = f(x, y), x = r \cos \theta, y = \sin \theta \), then prove that \(\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 = \left(\frac{\partial z}{\partial r} \right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta} \right)^2 \). \[05\]

OR

Q.5
(a) Verify Euler's theorem for \(z = x^y \log \left(\frac{y}{x} \right) \) and find \(x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2} \).

(b) If \(z = xy f \left(\frac{y}{x} \right) \) and \(z \) is constant, then show that \(f \left(\frac{y}{x} \right) = \frac{x}{y} \left[y + x \frac{dy}{dx} \right] \). \[05\]

Q.6
Prove that the necessary and sufficient condition for the differential equation \(Mdx + Ndy = 0 \) to be exact is that \(\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \). \[10\]

OR

Q.6
Solve: \((p + y + x)(xp + x + y)(p + 2x) = 0 \) \[10\]
