SARDAR PATEL UNIVERSITY

Rules and Regulations for

Post graduate Diploma in Dialysis Technology
(PG-DIDT)

(w.e.f. JUNE-2011)

R. DIDT. 1: Eligibility for the admission:

a) A Candidate for admission to the Post graduate Diploma in Dialysis Technology (PG-DIDT) must have passed the B Sc. Degree examination of the Sardar Patel University with Medical Technology (any speciality) / Microbiology / Bio Chemistry / Zoology / Botany / Chemistry / BioTechnology / Environment Science / Genetics / Bioinformatics as principal subject or B. Sc. (Home Science) (Vocational) or B. Sc (Industrial Microbiology) (Vocational) or B.Sc. (Nursing) / Bachelor of Physiotherapy (BPT) / Bachelor of Homeopathic Medicine and Surgery (BHMS) / Bachelor of Ayurvedic Medicine and Surgery (BAMS) examination of Sardar Patel University or an equivalent examination from any other recognized university.

b) A candidate who has passed an equivalent examining body and is seeking admission to the Institute recognised by this University shall not be admitted without producing on eligibility certificate from the Sardar Patel University

R. DIDT. 2: Duration of the course:
The course of study for the Post graduate Diploma in Dialysis Technology (PG-DIDT) shall be a full time course and its duration shall be of one academic year.

R. DIDT. 3: Medium of instruction:
The medium of instruction and examination shall be in English.

R. DIDT. 4: Criteria for eligibility to appear in University examination
To become eligible to appear in the final examination conducted by Sardar Patel University -

a) a candidate has to keep two terms at the Institute recognised for teaching the course of studies in Post graduate Diploma in Dialysis Technology by the university.

b) a candidate has to keep the minimum attendance of 75% in Theory and Practicals separately.

c) a candidate has to obtain at least 30% marks in aggregate of all the papers/practical in the internal tests conducted by the Institute.
R. DIDT.5: The subjects for Post graduate Diploma in Dialysis Technology (PG-DIDT) and their total teaching hours during the course shall be as under:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Subject</th>
<th>Course Code</th>
<th>Total Teaching hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anatomy and Physiology</td>
<td>PG-DIDT-101</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>Biochemistry and Pathology</td>
<td>PG-DIDT-102</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>Dialysis Technology I</td>
<td>PG-DIDT-103</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>Dialysis Technology II</td>
<td>PG-DIDT-104</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>Practicals and Oral (P)</td>
<td>PG-DIDT-105</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Total Teaching hours-Theory & Practicals</td>
<td></td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>Clinical/Laboratory Posting</td>
<td></td>
<td>540</td>
</tr>
<tr>
<td></td>
<td>Total Teaching hours</td>
<td></td>
<td>990</td>
</tr>
</tbody>
</table>
R. DIDT. 6: Subjects-wise credits and Scheme of examination shall be as follows:

PG-DIDT
Subject-wise credits, Examination System and Marks distribution:
Theory and Practical

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Subject</th>
<th>Credit</th>
<th>Duration of Examination (hours)</th>
<th>Distribution of marks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG-DIDT-101</td>
<td>Anatomy and Physiology</td>
<td>3</td>
<td>3 hours</td>
<td>80 20</td>
<td>100</td>
</tr>
<tr>
<td>PG-DIDT-102</td>
<td>Biochemistry and Pathology</td>
<td>3</td>
<td>3 hours</td>
<td>80 20</td>
<td>100</td>
</tr>
<tr>
<td>PG-DIDT-103</td>
<td>Dialysis Technology I</td>
<td>3</td>
<td>3 hours</td>
<td>80 20</td>
<td>100</td>
</tr>
<tr>
<td>PG-DIDT-104</td>
<td>Dialysis Technology II</td>
<td>3</td>
<td>3 hours</td>
<td>80 20</td>
<td>100</td>
</tr>
<tr>
<td>PG-DIDT-105 (P)</td>
<td>Practicals and Oral</td>
<td>3</td>
<td>1 day</td>
<td>160 40</td>
<td>200</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>600</td>
</tr>
</tbody>
</table>
R. DIDT. 7: Eligible candidate desirous for appearing in the University examination of any/all theory papers must forward his/her application in the prescribed form from the respective college to the University on or before the date prescribed for the purpose under the relevant ordinance.

R. DIDT.8: Standard of passing:
The standard of passing the Post graduate Diploma in Dialysis Technology degree examination will be as under:
(a) To pass the PG-DIDT examination, a candidate must obtain at least 45% marks (aggregate of external and internal) in each subject and in practical separately.
(b) Award of class will be as per the other degree examinations of faculty of Medicine, Sardar Patel University.

R. DIDT. 9: The Post graduate Diploma in Dialysis Technology shall not be conferred upon a candidate unless he/she has passed in all the subjects of the theory examination and the practical in accordance with the provisions of relevant regulations.
PAPER I:

ANATOMY AND PHYSIOLOGY

COURSE CODE: PGDIDT: 101

ANATOMY

1. Urinary System:
 - Introduction to Urinary System
 - Kidney
 - Location
 - Size and shape
 - External structure
 - Hilum of the kidney
 - Internal Structure
 - Organs associated with kidney
 - Coverings of the kidney
 - Blood supply
 - Nerve supply
 - Nephron
 - Introduction
 - Size and shape
 - Structure
 - Types
 - Collecting duct
 - Ureter
 - Location
 - Size and shape
 - Structure
 - Blood supply
 - Nerve supply
 - Urinary Bladder
 - Location
 - Size and shape
 - Three layers of bladder wall
 - Structures
 - Relations of urinary bladder
 - Blood flow
Nerve supply

2. Arteries and Veins of the Limbs and the Neck
 Radial Artery and Vein
 Brachial Artery and Vein
 Cephalic Vein
 Basillic Vein
 Ulnar Artery and Vein
 Femoral Artery and Vein
 Great Saphenous Vein
 Intra Jugular Vein
 Subclavian Vein

3. Peritoneum
 Peritoneal Membrane
 Perital peritoneum
 Visceral peritoneum
 Folds of peritoneum
 Peritoneal cavity
 Arterial supply
 Venous drainage

 Pores
 Large pores
 Small pores
 Ultra pores

PHYSIOLOGY

1. Functions of Kidney
 Role in Homeostasis
 Excretion of waste products
 Maintenance of water balance
 Maintenance of electrolyte balance
 Maintenance of acid base balance
 Hemopoietic Functions
 Endocrine Functions
 Blood Pressure Regulation
 Regulation of Blood Calcium level

2. Micturation
 Process of filling
 Sphincters
 Micturition
 Micturition reflux
1. Proteins, Minerals, Vitamins
Proteins:
 Plasma proteins
 Albumin
 Globulin
 Immunoglobulins
 Fibrinogen
 Amino acids
 Functions of proteins
 Protein requirements
 Causes of protein deficiency

 Complications of protein deficiency
 Dietary sources of protein

Vitamins
 Water soluble and Fat soluble
 Recommended dietary allowances
 Deficiency diseases
 Upper intake level
 Overdose disease
 Dietary sources

Minerals (Dietary resource, requirement, uses and sources)
 Introduction
 Sodium
 Potassium
 Calcium
 Iron
 Magnesium
 Phosphate
 Iodine
 Copper
 Cobalt
 Chloride
 Fluoride

2. Nucleoproteins
 Hemoglobin
3. Nutrition
 RDA for healthy individuals and for dialysis patients
 RDA for health individuals
 RDA for Hemodialysis patients
 RDA for Peritoneal dialysis patients

PATHOLOGY

1. Acute Renal Failure
 Definition
 Causes
 Prerenal
 Renal
 Post renal
 Pathophysiology
 Prevention
 Risk factors
 Treatment
 Signs and symptoms

2. Chronic Renal failure
 Definition
 Causes
 Pathophysiology
 Prevention
 Treatment and Management

3. Urinary tract infection
 Causes
 Prevention
 Treatment

4. Diabetes
 Types
 Treatment
 Complications

5. Hypertension
 Types
 Treatment
 Complications
1. Types of Hemodialysis
 Conventional Hemodialysis
 Daily Hemodialysis
 Nocturnal Hemodialysis

2. Principles of Hemodialysis
 Ultrafiltration
 Diffusion
 Osmosis
 Convection

3. Dialyser Membranes
 High Flux and Low Flux
 Membranes and their biocompatibility

4. Reprocessing of Dialysers
 Rinse
 Clean
 Test
 Disinfect

5. Chemicals used in dialysis unit
 Chemicals used for Reprocessing
 Formalin
 Sodium Hypochloride
 Hydrogen Peroxide
 IV Fluids
 Normal Saline
 Half Normal Saline and Deci Normal Saline
 Dextrose
 Hemodialysis Concentrates
 Acid Concentrate (Part A)
 Bicarb Concentrate (Part B)
 Acetate Concentrate
 Machine Disinfectants
 Puristerile
 Citrosterile
 Others
 Sterillium
 Betadine

6. CRRT (Continuous Renal Replacement Therapy) and special blood based therapies
 CVVHD
CVVHF
CVVHDF
SCUF
IUF
SLED

7. Water Treatment
 Steps in Water Treatment
 Hemodialysis Water Quality
 AAMI Standards

8. Vascular Access
 Temporary access
 Permanent access

9. Monitoring and Assessment of Hemodialysis
 Pre, Post & Intra Dialytic patient assessment
 Hemodialysis Machine monitoring

10. Lab data assessment
 Normal Lab values
 Lab values in renal failure

PAPER IV:

DIALYSIS TECHNOLOGY - II

COURSE CODE: PGDIDT: 104

1. Nutrition management in dialysis patients
 Malnutrition
 Recommended daily allowance of nutrients for dialysis patients
 Total parenteral Nutrition
 Intradialytic parenteral nutrition

2. Anticoagulation in dialysis
 Types of anticoagulation
 Heparin in Detail

3. Infection control and universal precautions
 Safety precautions
 Infection control
 Needle stick injury
 Air borne diseases
 Chemical exposure

4. Complications of Hemodialysis
 Acute
 Hypotension
Muscle cramps
Nausea and vomiting
Head ache
Chest pain
Back pain
Fever and chills
Itching

Chronic
Mineral bone disease
Sleep disorders
Left ventricular hypertrophy
Infections
Others

5. Indications and contraindications of dialysis therapy
6. Psychosocial aspects in dialysis, patient education
7. Body composition monitoring
 Indications
 Contraindications
 Advantages
 Procedure
 Care of the machines
8. Drugs and dialysis
 Erythropoietin
 Vitamin Supplements
 Vancomycin and other antibiotics
 Dextrose Solution
 Iron Sucrose
 Colloids
 Antihypertensive drugs
 Emergency drugs
 Nitroglycerides
 Dopamine & Dobutamine
 Epinephrine & Nor epinephrine
 Others
9. Principles of Peritoneal dialysis
 Osmosis
 Diffusion
10. Types and complications of peritoneal dialysis
 Selection of modality
 Types of Peritoneal dialysis
 Complication of PD
 Non Infection complications
 Infectious Complications
PRACTICALS

COURSE CODE: PGIDT: 105 (P)

(A) Anatomy

1. Identification of different parts of the urinary system, kidney, nephrons, veins and arteries, Peritoneum
2. Urinary system
 - Kidneys
 - Ureter
 - Urinary bladder
 - Urethra
 - Renal Artery
 - Renal vein
 - Renal pelvis
3. Kidneys
 - Surface, Borders, Poles, Coverings and Hilum of the kidney
 - Cortex
 - Medulla
 - Renal pyramids
 - Major calyx
 - Minor calyx
 - Renal pelvis
 - Renal artery and vein
 - Capsule
 - Renal facia
 - Renal fat
 - Ureter

(B) Dialysis technology

1. Patient assessment (Pre, Intra and post dialysis)
 a. Weight
 b. Edema
 c. Vitals
 - Blood pressure
 - Pulse
 - Temperature
 - Respiration
 d. Vascular access
 - Bruit and Thrill, Aneurysm, Pseudoaneurysm
2. Cannulation site selection and preparation
3. Cannulation of fistula
4. Predialysis patient and machine preparation
5. Dialyser reprocessing
6. Post dialysis machine preparation
7. Intra dialytic complication management
8. Medication administration
9. Heparin dosage selection
10. Machine trouble shooting

Suggested Reference Books:

Anatomy: Gray’s Anatomy
Physiology: Text book of Physiology by Sembulingam
Biochemistry: Textbook of Biochemistry by Sathyanaraya
Pathology: Textbook of Pathology by Harsh Mohan
Dialysis: Handbook of Dialysis by Daugirdas,
 Textbook of Dialysis therapy by Allen Nissensson
Examination Structure

- The external examination of four theory papers and one practical will be held at the end of the academic year.
- Candidates will be examined in four theory papers and two practical to make the total of 550 marks at the end of the year.
- This will include 400 marks of theory examination, 150 marks of practical.
- The ratio between internal and external assessment will be 20:80 respectively.
- For the purpose of internal assessment the Institute will conduct at least one test in the year.
- The distribution of marks will be as under (internal assessment)
 - Each internal theory exam will be of 100 marks
 - Each internal practical exam will be of 50 marks
 - That is $100 + 50 = 150$ marks in total.
- From these 100 and 50 marks 20% will be added in external theory and practical assessment respectively.
- Passing standard: 45%
- Award of rankings: According to university

<table>
<thead>
<tr>
<th></th>
<th>Theory Marks</th>
<th>Prac Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomy and Physiology</td>
<td>Paper I</td>
<td>100</td>
</tr>
<tr>
<td>Biochemistry and Pathology</td>
<td>Paper II</td>
<td>100</td>
</tr>
<tr>
<td>Dialysis Technology I</td>
<td>Paper III</td>
<td>100</td>
</tr>
<tr>
<td>Dialysis Technology II</td>
<td>Paper IV</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>400</td>
</tr>
</tbody>
</table>