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Line Setup | Data collection | Bench used Laser Source | Stability | Standard
Color used location (nm) | deviation
on (nm)
Graph
Red black Lab on 4* floor | floating optical He-Ne laser 0.11 0.010
201) setup ITE bench
(08/08/2017)
Black black Lab on 4% floor | Non floating He-Ne laser 0.24 0.029
(202) setup ITE optical bench
(08/08/2017)
Green black Lab on 4% floor | a wooden table He-Ne laser 0.27 0.030
(203) setup ITE
(08/08/2017)
Cyan green Lab in BECAT non-floating | Red laser diode 0.39 0.172
(204) setup (07/2572017) optical bench
Magent | grey setup | UCONN Health lab bench Red laser diode 0.78 0.445
a {205 center
(03/21/2017)
Blue black UCONN Health tab bench He-Ne laser 0.79 0.015
{2006) setup center
(03/21/2017)
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AUTOMATED CELL IDENTIFICATION
USING SHEARING INTERFEROMETRY

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Appli-
cation Ser. No. 62/631,140, filed on Feb. 15, 2018, and
entitled “Automated Cell Identification Using Shearing
Interferometry” and to U.S. Provisional Application Ser. No.
62/631,268, filed on Feb. 15, 2018, and entitled “Portable
Common Path Shearing Interferometry-Based Holographic
Microscopy System.” The content of each of the foregoing
provisional applications is incorporated herein in their
entireties.

STATEMENT OF GOVERNMENT SUPPORT

This invention was made with Government support under
Grant 1545687 awarded by the National Science Founda-
tion. The government has certain rights in the invention.

FIELD OF THE DISCLOSURE

The present disclosure relates generally to systems and
methods for automated cell identification/classification and,
more particularly, to systems and methods for automated cell
identification/classification using shearing interferometry
with a digital holographic microscope.

BACKGROUND OF THE DISCLOSURE

Currently, biomolecular analysis is typically used in order
to diagnose sickle cell disease. However, such analysis can
be expensive and cumbersome, particularly for developing
countries.

An interest exists for improved systems and methods for
cell identification. These and other inefficiencies and oppor-
tunities for improvement are addressed and/or overcome by
the assemblies, systems and methods of the present disclo-
sure.

SUMMARY OF THE DISCLOSURE

The present disclosure provides improved systems and
methods for automated cell identification/classification.
More particularly, the present disclosure provides advanta-
geous systems and methods for automated cell identifica-
tion/classification using a digital holographic microscope
based on shearing interferometry.

In exemplary embodiments, the present disclosure pro-
vides for a compact, low-cost, and field-portable 3D printed
system for automatic cell identification/classification using a
common path shearing interferometry with digital holo-
graphic microscopy. This system has been tested and has
demonstrated good results for sickle cell disease identifica-
tion/classification with human blood cells.

The present disclosure provides a robust, low cost cell
identification/classification system based on shearing inter-
ferometry that can be used for accurate cell identification/
classification. For example, by combining both the static
features of the cell along with information on the cell
motility, identification/classification can be performed to
determine the type of cell present in addition to the state of
the cell (e.g., diseased vs. healthy).

The present disclosure provides for a method for auto-
mated classification of a micro-object, the method including
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obtaining digital holographic data from a sample imaged in
a common path shearing digital holographic microscope, the
digital holographic data including a hologram of at least one
micro-object in the sample; determining a plurality of fea-
tures for a micro-object in the hologram from the obtained
digital holographic data, the plurality of features including
three or more of: a mean thickness value for the micro-
object; a coeflicient of variation for the thickness of the
micro-object; a thickness skewness value for the micro-
object, where the thickness skewness measures the lack of
symmetry of the thickness values from the mean thickness
value; a thickness kurtosis value that describes the sharpness
of'the thickness distribution for the micro-object; a projected
area for the micro-object; an optical volume of the micro-
object; a ratio of the projected area to the optical volume for
the micro-object; and a dry mass of the micro-object;
determining whether the micro-object belongs to a particular
type of micro-object by applying a pre-trained classifier to
the determined plurality of features; and based on the
determination, saving an indication of whether the micro-
object belongs to a particular type of micro-object.

The present disclosure also provides for a method for
automated classification of a micro-object wherein the pre-
trained classifier is a random forest classifier.

The present disclosure also provides for a method for
automated classification of a micro-object wherein the par-
ticular type of micro-object is a biological cell.

The present disclosure also provides for a method for
automated classification of a micro-object wherein the par-
ticular type of micro-object is a microorganism.

The present disclosure also provides for a method for
automated classification of a micro-object further including
generating an unwrapped phase image based on the holo-
gram of at least one micro-object in the sample and a
hologram acquired without a sample; and identifying a
portion or portions of the unwrapped phase image corre-
sponding to the at least one micro-object based on analysis
of the unwrapped phase image.

The present disclosure also provides for a method for
automated classification of a micro-object wherein the com-
mon path shearing digital holographic microscope includes
a laser source, a microscopic objective lens, a glass plate and
an imaging device.

The present disclosure also provides for a method for
automated classification of a micro-object wherein the par-
ticular type of micro-object is selected from the group
consisting of glass beads, polystyrene beads, Diatom-Tabel-
laria cells, blood cells, yeast cells and E. coli bacteria.

The present disclosure also provides for a method for
automated classification of a micro-object further including
generating a 3D reconstructed height profile of the micro-
object in the hologram.

The present disclosure also provides for a method for
automated classification of a micro-object further including
utilizing the generated 3D reconstructed height profile of the
micro-object to determine the plurality of features for the
micro-object.

The present disclosure also provides for a method for
automated classification of a micro-object wherein the par-
ticular type of micro-object distinguishes between healthy or
diseased blood cells, between healthy or diseased red blood
cells, between healthy or cancerous cells, or between low or
high cholesterol levels in the blood.

The present disclosure also provides for a method for
automated classification of a micro-object, the method
including obtaining digital holographic data from a sample
imaged in a common path shearing digital holographic
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microscope, the digital holographic data including a video
hologram of at least one micro-object in the sample recorded
over a pre-determined time period; generating a plurality of
3D reconstructed height profiles of a micro-object in the
video hologram, the plurality of 3D reconstructed height
profiles obtained from a corresponding plurality of hologram
frames spanning the pre-determined time period; generating
a 2D mean map of the 3D reconstructed height profiles of the
micro-object, the 2D mean map generated by determining
the mean height for each pixel of the plurality of 3D
reconstructed height profiles over the pre-determined time
period; generating a 2D standard deviation map of the 3D
reconstructed height profiles of the micro-object, the 2D
standard deviation map generated by determining the stan-
dard deviation in height for each pixel of the plurality of 3D
reconstructed height profiles over the pre-determined time
period; determining the standard deviation of the 2D mean
map to generate a value for a first feature for the micro-
object in the video hologram; determining the standard
deviation of the 2D standard deviation map to generate a
value for a second feature for the micro-object in the video
hologram; determining optical flow vectors between 3D
reconstructed height profiles corresponding to successive
frames for each 3D reconstructed height profile after the first
3D reconstructed height profile; determining the mean of the
magnitude of the optical flow vectors over the pre-deter-
mined time period; determining the standard deviation of the
mean of the magnitude of the optical flow vectors of the
plurality of 3D reconstructed height profiles over the pre-
determined time period to generate a value for a third feature
for the micro-object in the video hologram; determining
whether the micro-object belongs to a particular type of
micro-object by applying a pre-trained classifier to the value
of the first feature, the value of the second feature and value
of the third feature; and based on the determination, saving
an indication of whether the micro-object belongs to a
particular type of micro-object.

The present disclosure also provides for a method for
automated classification of a micro-object wherein the pre-
trained classifier is a random forest classifier.

The present disclosure also provides for a method for
automated classification of a micro-object wherein the par-
ticular type of micro-object is a healthy red blood cell.

The present disclosure also provides for a method for
automated classification of a micro-object wherein the par-
ticular type of micro-object is a sickled red blood cell.

The present disclosure also provides for a method for
automated classification of a micro-object wherein the par-
ticular type of micro-object is a biological cell or a micro-
organism.

The present disclosure also provides for a method for
automated classification of a micro-object wherein the com-
mon path shearing digital holographic microscope includes
a laser source, a microscopic objective lens, a glass plate and
an imaging device.

The present disclosure also provides for a method for
automated classification of a micro-object wherein the
sample includes blood.

The present disclosure also provides for a method for
automated classification of a micro-object wherein the plu-
rality of hologram frames of the video hologram of the at
least one micro-object in the sample are recorded at a rate of
between 20 and 40 frames per second.

The present disclosure also provides for a method for
automated classification of a micro-object wherein the plu-
rality of hologram frames comprise between 100 and 900
frames.
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The present disclosure also provides for a method for
automated classification of a micro-object wherein the plu-
rality of hologram frames comprise between 400 and 700
frames.

Any combination or permutation of embodiments is envi-
sioned. Additional advantageous features, functions and
applications of the disclosed systems, assemblies and meth-
ods of the present disclosure will be apparent from the
description which follows, particularly when read in con-
junction with the appended figures. All references listed in
this disclosure are hereby incorporated by reference in their
entireties.

BRIEF DESCRIPTION OF THE DRAWINGS

Features and aspects of embodiments are described below
with reference to the accompanying drawings, in which
elements are not necessarily depicted to scale.

Exemplary embodiments of the present disclosure are
further described with reference to the appended figures. It
is to be noted that the various features, steps and combina-
tions of features/steps described below and illustrated in the
figures can be arranged and organized differently to result in
embodiments which are still within the scope of the present
disclosure. To assist those of ordinary skill in the art in
making and using the disclosed assemblies, systems and
methods, reference is made to the appended figures,
wherein:

FIGS. 1A-1B: FIG. 1A shows an exemplary single path
setup using a CMOS sensor; and FIG. 1B shows an exem-
plary single path setup using a cell phone sensor;

FIGS. 2A-2B: FIG. 2A shows a field of view (FOV) of a
cell phone used in experiments; and FIG. 2B shows a field
of view of a CMOS sensor used in experiments;

FIG. 3 shows a 3D printed prototype of the DH micro-
scope (with CMOS sensor) with the dimensions of 304x
304x170 mm (with the breadboard); the weight of the
system was 4.62 kg with the HeNe laser and breadboard and
800 g without the HeNe laser and breadboard;

FIG. 4 shows a compact 3D printed prototype of the DH
microscope with a laser diode with the dimensions of
75x95%200 mm; the setup weighed 910 g (without the base)
and 1.365 kg (with the base);

FIG. 5 shows a flowchart of the 3D reconstruction algo-
rithm from the recorded hologram; An=n,-n,, is the refrac-
tive index difference between the object and surrounding
medium;

FIGS. 6A-6E show experimental results for the compact
3D printed DH microscope shown in FIG. 3 using the
CMOS sensor; FIG. 6 A shows a digital hologram of a 20 um
glass bead; FIG. 6B shows unwrapped phase profile of the
same bead; FIG. 6C shows a 2D thickness profile; FIG. 6D
shows a 1D cross-sectional profile of the bead along the line
shown in FIG. 6C; and FIG. 6E shows a pseudocolor 3D
rendering of the thickness profile for the glass bead;

FIGS. 7A-7TH: FIG. 7A shows a digital hologram of
Diatom-Tabellaria using the CMOS sensor; FIG. 7B shows
a 2D thickness profile; FIG. 7C shows a 1D cross-sectional
profile of diatom along the line shown in FIG. 7B; FI1G. 7D
shows a pseudocolor 3D rendering of the thickness profile
for the diatom; Likewise, FIGS. 7E-7H are the digital
hologram, 2D thickness profile, 1D cross-sectional profile,
and pseudocolor 3D rendering of the thickness profile for E.
coli bacteria, respectively;

FIGS. 8A-8E show experimental results for the more
compact 3D printed DH microscope as shown in FIG. 4:
FIG. 8 A shows a digital hologram of a 20-um glass bead;
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FIG. 8B shows the unwrapped phase profile of a 20-um glass
bead and FIG. 8C shows a 2D thickness profile; FIG. 8D
shows a 1D cross-sectional profile of the bead along the line
shown in FIG. 8C; FIG. 8E shows a pseudocolor 3D
rendering of the thickness profile for the glass bead;

FIGS. 9A-9E show experimental results for the more
compact 3D printed DH microscope shown in FIG. 4: FIG.
9A shows a digital hologram of yeast cells; FIG. 9B shows
the unwrapped phase profile for the same cells; FIG. 9C
shows a 2D thickness profile; FIG. 9D shows a 1D cross-
sectional profile of the yeast cells along the line shown in
FIG. 9C; FIG. 9E shows a pseudocolor 3D rendering of the
thickness profile for the yeast cells;

FIG. 10 shows experimental results for the temporal
stability of the compact 3D printed DH microscope; Histo-
gram of standard deviations of fluctuations of 128x128
pixels recorded at a frame rate of 30 Hz without mechanical
isolation; The inset shows the mean of standard deviations,
which was 0.24 nm;

FIG. 11A shows a setup for an exemplary common-path
biosensor based on shearing digital holographic microscopy;

FIG. 11B shows a compact 3D printed prototype of the
DH microscope with the dimensions of 90 mmx85 mmx200
mm;

FIGS. 12A-12B: Show thickness profile for blood smears
from (FIG. 12A) a healthy volunteer, and (FIG. 12B) a
patient with SCD;

FIG. 13A shows a stack of 3D optical path length (OPL)
reconstructions for a h-RBC at different time intervals, and
FIG. 13B shows a data cube of 3D cell reconstructions
recorded over time t; The far left rectangular box in the
temporal cube of FIG. 13B represents a single pixel stack,
each element of this stack contains membrane fluctuation
information at any time instance;

FIG. 14A shows the 2D mean pixel map, and FIG. 14B
shows the 2D standard deviation (STD) pixel map, com-
puted by taking the mean and standard deviation, respec-
tively, of the spatio-temporal cube consisting of 3D recon-
structed holograms over time t along the t dimension;

FIG. 15 depicts optical flow vectors (shown by a quiver
plot) for a healthy (segmented) RBC between two succes-
sive 3D reconstructed OPL frames;

FIGS. 16A-B show: Pseudo-color 3D reconstructions for
(FIG. 16A) a healthy RBC, and (FIG. 16B) a round sickle
(left of FIG. 16B) and a crescent shaped sickle cell disease
RBC (right of FIG. 16B);

FIG. 17 shows an example of a 3D reconstructed image;

FIGS. 18A-18B show optical flow between successive
frames of a segmented RBC:

FIG. 18A shows optical flow between frame 1 and frame
2; and FIG. 18B shows optical flow between frame 2 and
frame 3;

FIG. 19A is a perspective view of a portable common path
shearing interferometry-based holographic microscopy sys-
tem in accordance with some embodiments;

FIG. 19B is a front perspective view of a portion of the
system of FIG. 19A;

FIG. 19C is a side perspective view of the system of FIG.
19A,;

FIG. 19D is a back perspective view of the system of FIG.
19A,;

FIG. 19E depicts a top perspective view of the system of
FIG. 19A;

FIG. 19F schematically depicts a side cutaway view of the
system of FIG. 19A with the housing cut away to show
components within the housing;
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FIG. 20 schematically depicts the optical path of the
common path shearing interferometry system of FIG. 19A;

FIG. 21A depicts a perspective view of the sidewall
portion of the housing of the system of FIG. 19A;

FIG. 21B depicts another perspective view of the sidewall
portion of the housing of FIG. 21A;

FIG. 22 is a top view of a base portion of the housing of
the system of FIG. 19A;

FIG. 23A is a perspective view of a shear plate holding
portion of the housing of the system of FIG. 19A;

FIG. 23B is a perspective view from the top and front of
the shear plate holding portion of FIG. 23A;

FIG. 24 A is a perspective view from the side and front of
an imaging device holding portion of the housing of the
system of FIG. 19A;

FIG. 24B is a perspective view from the side and back of
the imaging device holding portion of FIG. 24A;

FIG. 24C is a top view of a cover for the imaging device
holding portion FIG. 24A;

FIG. 24D is a side view of the cover of FIG. 24C;

FIG. 25A is a side view of a lens and stage mounting
component of the system of FIG. 19A;

FIG. 25B is a top view of the lens and stage mounting
component of FIG. 25A;

FIG. 26A is a perspective view of a portable common path
shearing interferometry-based holographic microscopy sys-
tem in accordance with some embodiments;

FIG. 268 is a side perspective view of the system of FIG.
26A,

FIG. 26C is another perspective view of the system of
FIG. 26A;

FIG. 26D is a perspective view from the top and front of
the system of FIG. 26A;

FIG. 26F is a perspective view from the back and side of
the system of 26A;

FIG. 27 is a perspective view of a portable common path
shearing interferometry-based holographic microscopy sys-
tem in accordance with some embodiments;

FIG. 28A is a front perspective view of a housing of the
system of FIG. 27,

FIG. 28B is top perspective view of the housing of FIG.
28A,

FIG. 28C is a perspective view from the front and side of
the housing of FIG. 28A;

FIG. 28D is a perspective view from the top and back of
the housing of FIG. 28A;

FIG. 29A is a perspective view of a base plate for the
system of FIG. 27,

FIG. 29B is a top view of the base plate of FIG. 29A;

FIG. 30A is a perspective view of a portable common path
shearing interferometry-based holographic microscopy sys-
tem in accordance with some embodiments;

FIG. 30B is a top perspective view of the system of FIG.
30A,;

FIG. 31A is a perspective view of a sidewall portion of a
housing of the system of FIG. 30A;

FIG. 31B is another perspective view of the sidewall
portion of the housing of FIG. 30A;

FIG. 32A is a perspective view of a 45 degree mount of
the system of FIG. 30A;

FIG. 32B is a top perspective view of the 45 degree mount
of FIG. 32A;

FIG. 33A is a top view of a base plate for the system of
FIG. 30A;

FIG. 33B is a perspective view of the base plate of FIG.
33A,
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FIG. 34 is a perspective view of a top plate of the housing
of the system of FIG. 30A that accommodates the micro-
scope objective;

FIG. 35 is a perspective view of an adaptor of the system
of FIG. 30A;

FIG. 36A is a perspective view of a shear plate holding
portion of the housing of the system of FIG. 30A;

FIG. 36B is another perspective view of the shear plate
holding portion of FIG. 36A;

FIG. 37A is a perspective view of a sample holder for the
system of FIG. 30A;

FIG. 37B is a top view of the sample holder of FIG. 37A;

FIG. 38 is a perspective view of a wire holder for the
system of FIG. 30A;

FIG. 39 is a table of experimental temporal stability data
acquired using different example systems placed in varying
locations that exhibit different sources of noise;

FIG. 40 is a histogram of the experimental temporal
stability data for the different example systems placed in
varying locations that exhibit different sources of noise;

FIG. 41 is a block diagram showing an exemplary system
for processing and analyzing hologram data, according to an
example embodiment;

FIG. 42 is a diagram of an exemplary network environ-
ment suitable for a distributed implementation of exemplary
embodiments for processing and analyzing hologram data;

FIG. 43 is a block diagram of an exemplary computing
device that may be used with exemplary optical systems to
implement exemplary embodiments described herein;

FIG. 44 shows experimental results for the temporal
stability of an exemplary compact 3D printed prototype (see
FIG. 11B) in a clinical setting;

FIG. 45A is a 3D pseudo color reconstruction video frame
for an h-RBC depicting the cell thickness; FIG. 45B is a top
view of the same h-RBC;

FIG. 46 shows cell membrane fluctuations for three
different spatial locations (A, B, and C from FIG. 45B) on
an h-RBC’s membrane; o=standard deviation;

FIG. 47 shows density plots of three spatio-temporal and
seven morphological features extracted from the cell data;
OF=optical flow, STD_MEAN=standard deviation of the
2D mean map, STD_STD=standard deviation of the stan-
dard deviation map, M-OPL=mean of optical path length
values, COV=coeflicient of variation, OPT_VOL (OV)=op-
tical volume based on OPL, PROJ_AREA (PA)=projected
cell area based on OPL, PA/OV=ratio of PA over OV,
SKEWNESS=skewness based on OPL,
KURTOSIS=kurtosis based on OPL; The spatio-temporal
feature labels are Features 1, 2 and 3, and OPL based
morphological features labels are Features 4-10; and

FIG. 48 shows predictor importance estimates for the 10
features (see FIG. 47); Features are numbered 1-10 and
represent optical flow, standard deviation of the 2D mean
map, standard deviation of the standard deviation map, mean
optical path length, coeflicient of variation, optical volume,
projected area, projected area to optical volume ratio, skew-
ness, and kurtosis, respectively.

DETAILED DESCRIPTION OF DISCLOSURE

The exemplary embodiments disclosed herein are illus-
trative of advantageous methods for automated cell identi-
fication/classification, and systems of the present disclosure
and assemblies or techniques thereof. It should be under-
stood, however, that the disclosed embodiments are merely
exemplary of the present disclosure, which may be embod-
ied in various forms. Therefore, details disclosed herein with
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reference to exemplary assemblies and identification/classi-
fication methods and associated processes/techniques of
assembly and use are not to be interpreted as limiting, but
merely as the basis for teaching one skilled in the art how to
make and use the advantageous methods for automated cell
identification/classification and/or alternative systems of the
present disclosure.

The present disclosure provides improved systems and
methods for automated cell identification/classification.
More particularly, the present disclosure provides advanta-
geous systems and methods for automated cell identifica-
tion/classification using a digital holographic microscope
based on shearing interferometry.

In general, the present disclosure provides for a compact,
low-cost, and field-portable 3D printed system for automatic
cell identification/classification using a common path shear-
ing interferometry with digital holographic microscopy. This
system has demonstrated good results for sickle cell disease
identification/classification with human blood cells.

The exemplary system can be used to acquire holographic
images of cells, which are then reconstructed to a 3D image.
Using this static information, morphological cell features
from the reconstructed 3D height profiles can be extracted.
In addition, the system can acquire video data of a cell. Each
frame of the video of the hologram can be reconstructed.
These reconstructions are then combined to form a 3D
volume. The cell motility for a time sequence is then
recorded and analyzed. Some embodiments of systems and
methods employ either static features or dynamic features of
the cells for identification/classification of the cells and the
state of the cell (e.g., diseased vs. healthy). Also, by com-
bining both the static features of the cell along with infor-
mation on the cell motility, identification/classification can
be performed to determine the type of cell present in
addition to the state of the cell (e.g., diseased vs. healthy).
As such, the present disclosure provides that a robust, low
cost cell identification/classification system based on shear-
ing interferometry can be used for accurate cell identifica-
tion/classification.

For example, a potential user of the exemplary system/
method is a medical professional who desires to analyze a
blood sample of a patient. Another potential user may be a
medical professional in a remote region with limited acces-
sibility to blood labs and desires to analyze a blood sample
of a patient based on the 3D profile and motility of a cell.

The disclosed imaging system/method may also be useful
to researchers in medical fields that desire to extract 3D
information or motility information on cells they are ana-
lyzing or culturing since the disclosed system/method is low
cost and can quickly provide this information.

This exemplary system of the present disclosure is impor-
tant because it is a compact and low cost diagnosis system
allowing it to be portable and affordable. Moreover, the
system can quickly image a cell and generate a 3D imaging
allowing an end user to visualize 3D representation of the
cell, and to also extract three-dimensional features on the
cell in addition to cell motility information. In general,
traditional bright-field microscopes do not provide this
information. In addition, the system can rapidly identify/
classify a cell based on the 3D information. This can be
extremely important as cell identification/classification can
take days and sometimes might not be rapidly available if
performed in remote areas or developing countries.

The system can provide rapid diagnosis of a cell based on
optical signature and its motility which are measured and
analyzed with novel analytical approaches. Also, the system
can display a 3D image of a cell along with three-dimen-
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sional features and information on the movement of the cell.
Another unique aspect of the present disclosure is that the
imaging system itself can be designed to be compact and
field portable. It can include mostly 3D printed parts and
other components allowing it to be an inexpensive and
compact system. By examining both the static and dynamic
features, a rapid diagnosis of a cell is possible. The capturing
device used in the system can be a cell-phone camera or a
webcam or the like.

The 3D printed prototype can serve as a low-cost alter-
native for home care, point of care, and the developing
world, where access to laboratory facilities for disease
diagnosis are limited. Alternately, the exemplary system can
enable the user to send the acquired holograms over the
internet to a computational device located remotely for
cellular identification and classification and/or analysis.

Some advantages of the disclosed systems/methods of the
present disclosure include, without limitation: (i) some
embodiments utilize dynamic cell behavior information as
well as other opto-biological signatures; other embodiments
mainly utilize static signatures; (ii) the dynamic signature
analysis (e.g., using live human cells (healthy and diseased))
utilize different algorithms because of the dynamic signa-
tures employed; (iii) a novel compact field portable design
of the optical system to be used outside of the lab using
regular desks, tables, for use in hospitals, doctors offices, and
homes, etc; for example, the system has been 3D printed for
use in hospitals; (iv) the system has been demonstrated to be
effective for sickle cell disease identification/classification.

The present disclosure will be further described with
respect to the following examples; however, the scope of the
disclosure is not limited thereby. The following examples
illustrate the advantageous systems, methods and assemblies
for automated cell identification/classification of the present
disclosure.

Example 1: Compact and Field-Portable 3D Printed
Shearing Digital Holographic Microscope for
Automated Cell Identification

In exemplary embodiments, the present disclosure pro-
vides a low-cost, compact, and field-portable 3D printed
holographic microscope for automated cell identification/
classification based on a common path shearing interferom-
eter setup. Once a hologram is captured from the portable
setup, a 3D reconstructed height profile of the cell is created.
One can extract several morphological cell features from the
reconstructed 3D height profiles, including mean physical
cell thickness, coefficient of variation, optical volume (OV)
of'the cell, projected area of the cell (PA), ratio of PA to OV,
cell thickness kurtosis, cell thickness skewness, and the dry
mass of the cell for identification using the random forest
(RF) classifier. The 3D printed prototype can serve as a
low-cost alternative for the developing world, where access
to laboratory facilities for disease diagnosis are limited.
Additionally, a cell phone sensor can be used to capture the
digital holograms. This enables the user to send the acquired
holograms over the internet to a computational device
located remotely for cellular identification and classification
and/or analysis. The disclosed 3D printed system can be
used as a low-cost, stable, and field-portable digital holo-
graphic microscope as well as an automated cell identifica-
tion system. As such, the present disclosure provides for
automatic cell identification using a low-cost 3D printed
digital holographic microscopy setup based on common path
shearing interferometry.
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Digital holographic microscopy (DHMIC) is a label-free
imaging modality that enables the viewing of microscopic
objects without the use of exogenous or contrast agents.
DHMIC provides high axial accuracy; however, the lateral
resolution can be dependent on the magnification of the
objective lens used. DHMIC overcomes two problems asso-
ciated with conventional microscopy: the finite depth of
field, which is inversely proportional to the magnification of
the objective; and low contrast between the cell and the
surrounding media. Cells alter the phase of the probe wave-
front passing through the specimen, depending on the refrac-
tive index and thickness of the object. Several methods have
been developed to transform the phase information of the
object into amplitude or intensity information, but these
methods typically only provide qualitative information and
lack quantitative information. Staining methods, such as the
use of exogenous contrast agents, can enhance the image
contrast, but it might change the cell morphology or be
destructive. Due to the availability of fast CCD and CMOS
sensors, it is possible to record digital holograms in real
time. The recorded holograms can be numerically recon-
structed by simulating the process of diffraction using scalar
diffraction, leading to the complex amplitude of the object.
This complex amplitude contains the spatial phase informa-
tion of the object, from which one can reconstruct the phase
profile of the object. A digital holographic microscope
integrated with pattern recognition algorithms has been
proposed for automated cell identification. Some digital
holographic approaches have been proposed for automated
cell identification.

In general, digital holography and microscopy are
complementary techniques, and when combined, they can be
useful for studying cells in a quantitative manner. To study
dynamic parameters of the cell, such as cell membrane
fluctuations, one should have a very stable setup because
these fluctuations occur over just a few nanometers. One
problem with existing digital holographic (DH) microscopy
setups that use a double path configuration, is that the beams
travel in two different arms of the interferometer and are
then combined using a beam-splitter. As a result, the two
beams may acquire uncorrelated phase changes due to
mechanical vibrations. In comparison to two beam or double
path interferometric setups, common path setups are more
robust and immune to mechanical vibrations. In a common
path setup, the two beams travel in the same direction, that
is, the direction of beam propagation. There are some
common path configurations; however, exemplary embodi-
ments of the present disclosure utilize the self-referencing
lateral shearing configuration due to simplicity and cost-
effectiveness.

In this disclosure, a low-cost, compact, and field-portable
3D printed DH imaging system that can be used for auto-
mated cell identification is disclosed. The system includes a
laser source, a microscopic objective lens, a glass plate, and
an imaging device (e.g., CMOS camera or a cell phone
camera). Some of the components used to fabricate the setup
can be off-the-shelf optical components or printed from a 3D
printer, leading to a low-cost, compact, and field-portable
bio-sensing device. Once a hologram is recorded, a 3D
profile reconstruction is created. Features are extracted from
the reconstruction. The features are inputted into a pre-
trained random forest classifier, which then identifies the
cell. An exemplary system provided by this disclosure can
be used as a low-cost, stable, and field-portable DH micro-
scope and an automated cell identification system.

System Design and Camera Parameter Estimation:
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The schematic for the common path setup used for cell
identification is shown in FIGS. 1A-1B. A laser source
(A=633 nm) illuminates the sample under inspection and a
microscopic objective magnifies the sample. A fused silica
glass plate 14 splits the beam, generating two laterally
sheared object beams. These two sheared beams interfere
over the imaging sensor (CMOS or cell phone), and inter-
ference fringes are observed.

For the DHMIC setup in FIG. 1A, the CMOS sensor 10
used was a Thorlabs 8 bit, 5.2 pm pixel pitch, model
DCC1545M, which has a large dynamic range and a 10-bit
internal analog-to-digital conversion, but it transfers images
to the PC with a bit depth of 8 bits to improve the readout
time of the camera. For the cell phone sensor 12 setup (FIG.
1B), a Google Nexus 5, which has an 8 MP primary camera,
1/3.2" sensor size, and 1.4 um pixel size, was used. More-
over, the cell phone camera 12 used 8 bits/channel. When
comparing the camera sensor 10 with the cell phone sensor
12, the dynamic range of the cell phone sensor 12 may be
lower due to the small sensor and pixel size, as the pixel
wells fill quickly due to low saturation capacity. Moreover,
the cell phone sensor 12 has a Bayer filter for color detec-
tion. Finally, the cell phone camera sensor 12 has a lower
SNR than the CMOS camera 10. One reason is that the
images generated from the cell phone camera 12 are in the
JPEG format, which is a lossy compression scheme resulting
in a poorer image quality. The CMOS camera 10 can save
images as .bmp, which does not compress the images.

It is important to calculate the camera parameters. One
can utilize Imagel (a public domain software: https://im-
agej.nih.gov/ij/) to establish an equivalence between the
pixel covered by the object (also taking optical magnifica-
tion into account) and the distance in microns for the cell
phone sensor and CMOS. FIGS. 2A-2B show the equiva-
lence between the pixels and the distance in microns.

The test object used in FIGS. 2A-2B was a 20-um glass
bead (SPI supplies), the other beads as observed in FIGS.
2A-2B (solid yellow boxes around the objects) were the
sheared copies of the same objects. Moreover, the field of
view (FOV) of the DH microscope can depend on the
objective and eyepiece lens used. A higher magnification
objective gives a small FOV, as the sensor must image a
more magnified object in comparison to a lower magnifica-
tion lens; hence, a relatively smaller, magnified specimen
region can be imaged on the sensor. One can utilize 40x
objective lenses with a numerical aperture (NA) of 0.65. The
actual magnification depends on the placement of the cam-
era sensor from the objective. The theoretically achievable
lateral resolution with this objective is 0.595 um. The
eyepiece used with the cell phone setup had a magnification
of 25x. Table 1 below summarizes the parameter values for
the CMOS and the cell phone sensor. FIG. 3 depicts an
exemplary 3D printed prototype of the DH microscope.

TABLE 1
Camera Parameters
Camera Type
Camera Parameters CMOS Cell Phone Sensor
Magnification 52x 17x
Available sensor area (ASA) 35 mm? 7.78 mm?
Usable FOV (vertical) 104 um 260 pum
Usable FOV (horizontal) 130 um 260 pum
Pixel size 5.2 pm 1.4 pm
Sensor type Mono Color

FIG. 3 is an exemplary prototype with CMOS sensor 10,
which is analogous to the schematic shown in FIG. 1A. To
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use the cell phone sensor with the 3D printed setup shown
in FIG. 3, one can replace the CMOS 10 with the eyepiece
and the cell phone 12, as shown in FIG. 1B. A cell phone
adapter was 3D printed to hold the camera and eyepiece in
place. This system weighed 4.62 kg with the HeNe laser and
breadboard and 800 g without the HeNe laser and bread-
board. In addition, one can design and construct a more
compact 3D-printed DHMIC prototype with a smaller form
factor, which is shown in FIG. 4. This system uses a laser
diode (Thorlabs, CPS 635) with a wavelength of 635 nm and
an elliptical beam profile in place of the HeNe laser. More-
over, the system weighed 910 g (without the base) and 1.356
kg (with the base). In FIG. 4, the dimensions of the 3D
printed DHMIC prototype were 75x95x200 mm.

3D Reconstruction of Micro-Objects Using the 3D-Printed
Shearing DH Setup:

For the 3D printed DHMIC setup (see FIG. 3), a colli-
mated HeNe laser beam passes through a sample that is
magnified by an objective lens (40x magnification). In this
DH microscope employing lateral shearing geometry, holo-
grams, instead of shearograms, are formed at the detector.
This is achieved by introducing shear much larger than the
magnified object image so that the images from the front and
back surface of the glass plates are spatially separated.
Portions of the wavefront (reflected from the front or back
surface of the glass plate 14) unmodulated by the object
information act as the reference wavefront and interfere with
portions of the wavefront (reflected from the back or front
surface of the glass plate 14) modulated by the object, which
acts as the object wavefront. If the shear amount is larger
than the sensor dimension, the second image (either due to
reflection from the front or back surface) falls outside the
sensor area. If the sensor dimension is more than the shear
amount, redundant information about the object is recorded.
It should be noted that the full numerical aperture (NA) of
the magnifying lens is utilized in the formation of the
holograms. As a result, full spectral information is used in
the image reconstructions, and only the NA of the imaging
lens limits the imaging. In the reconstruction, the size of the
filter window of the Fourier transformed holograms should
be limited due to unwanted sidebands. These sidebands may
appear because of the non-uniform intensity variation at the
detector plane, leading to a change in the contrast of the
interference fringes. Another reason may be intensity image
saturation leading to a non-sinusoidal fringe pattern. In
addition, the size of the filter window decides the maximum
spatial frequency available in the reconstructed images. In
the case of CMOS sensors 10 and cell phone cameras 12, the
lateral resolution in the reconstructed images is not limited
by the imaging lens, but by the size of the filter window. In
an exemplary setup, the computed lateral resolution of the
system (see FIGS. 1 and 3), taking into consideration the
filter window size, is approximately 1.2 um. In addition, for
the system (blue shearing setup, see FIG. 4) with the laser
diode and CMOS sensor 10, the computed lateral resolution
is 0.9 um.

The lateral shear caused by the glass plate 14 helps to
achieve off-axis geometry, which enhances the reconstruc-
tions and simplifies the numerical processing of the digital
holograms, which is typically not possible in in-line DHMIC
setups such as Gabor holography. Moreover, the carrier
fringe frequency of the interferogram should not exceed the
Nyquist frequency of the sensor, as the carrier fringe fre-
quency is related to the off-axis angle caused by the lateral
shear generated by the glass plate 14. This means the fringe
frequency is a function of the thickness of the glass plate 14.
Thus, a thicker glass plate 14 can be used to increase the
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off-axis angle. The fringe frequency is f=S/rA, where S
denotes the lateral shift induced by the glass plate, A is the
wavelength of light source, and r is the radius of curvature
of the wavefront. Moreover, the relationship between
shift (S), glass plate thickness (t), incidence angle on glass
plate (B), and refractive index of glass (n) is given as
follows: S/t=Sin(2p) (n-sin f)~'">. Hence, a 3-5-mm glass
plate is sufficient for exemplary experiments, enabling spa-
tial filtering the spectrum and satisfying the Nyquist criteria
for sampling. To have more control over the off-axis angle,
a wedge plate can be used.

An exemplary object reconstruction process is shown in
FIG. 5. The Fourier transform of the digital hologram is
taken, filtered (digital filtering of the real part of spectrum in
Fourier domain), and then inverse Fourier transformed,
generating the phase map. One can record two holograms:
one with object and background (H,), and another with
background only (Hy). One can inverse Fourier transform
the filtered spectrums separately to obtain the object and
background phase (A¢,) and the background phase (A¢y).
To obtain the phase information due to object only, one can
subtract the phase map of object and background from the
phase map with background only; this process also removes
most of the system-related aberrations.

The phase was then unwrapped using the Goldstein’s
branch cut method. After phase unwrapping, one can com-
pute the cell height/thickness, Ah, where A¢., is the
unwrapped phase difference, A is the source wavelength, and
An is the refractive index difference between the object and
the surroundings.

Imaging Test Microspheres and Cells for the 3D Printed
Setup Using a HeNe Laser:

To test the performance of the system, which utilized the
CMOS camera 10 shown in FIG. 3, one can use 20-um glass
microspheres (SPI supplies) with a mean diameter of 19.9
plus/minus 1.4 um and average refractive index n,=1.56.
These microspheres were immersed in oil (average refrac-
tive index, n,,=1.518) and then spread on a thin microscopic
glass slide and covered with a thin coverslip. The digital
holograms were recorded, and the 3D profiles were recon-
structed using the steps mentioned in FIG. 5.

In FIG. 5, An=n,-n,, is the refractive index difference
between the object and surrounding medium used in the
reconstruction process. The reconstruction results using the
steps mentioned in FIG. 5 were implemented and are shown
in FIGS. 6A-6E.

FIG. 6A is the digital hologram of a 20-um glass bead,
acquired using the CMOS sensor. FIG. 6B shows the
unwrapped phase profile of the bead. FIG. 6C shows the
height variations, as depicted by color maps, and FIG. 6D is
the one-dimensional cross-sectional profile, along the line
(see FIG. 6C). FIG. 6E shows the pseudocolor 3D rendering
of the thickness profile for the same bead. One can compute
the thickness/diameter for 50 20-um glass microspheres,
where the mean diameter was 17.38 plus/minus 1.38 pm,
which was close to the thickness value specified by the
manufacturer.

The experiments were repeated for biological cells, such
as Diatom-Tabellaria (n,=1.50) and FE. coli bacteria
(n,,=1.35). Both cell types were immersed in deionized
water (n,,=1.33). FIG. 7A shows the digital hologram of the
Diatom-Tabellaria cells. FIG. 7B shows the height variations
depicted by color maps, FIG. 7C shows the 1D cross-
sectional profile of the diatom along the line, and FIG. 7D
is the reconstructed 3D height profile for the diatom. Like-
wise, FIGS. 7E-7TH are the digital hologram, the height
variations depicted by color maps, the 1D cross-sectional
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profile along the line (see FIG. 7F), and the reconstructed 3D
height profile for the E. coli bacteria. From FIG. 7H, one can
see that the length of E. coli is close to 12 um, the width is
between 2-4 um, and maximum height is 0.6 um.

Imaging Test Microspheres and Cells for the More Compact
3D Printed Setup Using a Laser Diode:

To show the 3D reconstruction capabilities with the more
compact 3D printed DH microscope shown in FIG. 4, one
can implement numerical reconstruction steps, as mentioned
previously for FIG. 5.

FIG. 8A is the digital hologram of a 20-um glass bead
(n,=1.56) immersed in oil (n,=1.5181) that was acquired
using the CMOS sensor. The bead diameter (obtained
experimentally) is 17.427 um plus/minus 0.9029 pm.

FIG. 8B shows the unwrapped phase profile of the bead.
FIG. 8C shows the height variations depicted by the color
maps, and FIG. 8D is the one-dimensional cross-sectional
profile along the line (see FIG. 8B). FIG. 8E shows the
pseudocolor 3D rendering of the thickness profile for the
same bead.

Likewise, one can perform 3D reconstructions for yeast
cells (n,=1.53) immersed in deionized water (n,,=1.33).

FIG. 9A is the digital hologram of yeast cells immersed in
distilled water acquired using the CMOS sensor. FIG. 9B
shows the unwrapped phase profile of the cells. FIG. 9C
shows the height variations depicted by color maps, and
FIG. 9D is the one-dimensional cross-sectional profile,
along the line (see FIG. 9C). FIG. 9E shows the pseudocolor
3D rendering of the thickness profile for the same cells.

In the reconstructions, roughness around and on the
objects was observed. This roughness can be attributed to
optical thickness variations. Microspheres may not be
smooth. Moreover, the optical thickness variation of the
object and its surroundings depends on either change in the
real thickness or due to spatially changing refractive index
(due to density change) in the micro-sphere and its surround-
ings.

The size of the roughness is approximately 1-2 pm, which
becomes visible as the window size becomes large enough
to accommodate the spatial frequencies. One can obtain
smooth reconstructions if the size of the filter window is
reduced. Other possible reasons for the roughness is sample
deformations and the presence of impurities.

Temporal Stability of the Compact 3D Printed DH Micro-
scope Setup:

An exemplary setup (see FIGS. 1 and 3) utilizes the
common path digital holography and exhibits a very high
temporal stability in contrast to the two beam configurations
such as Michelson and Mach-Zehnder, where the two beams
may acquire uncorrelated phase changes due to vibrations.
To determine the temporal stability of the 3D printed pro-
totype (FIG. 3), one can record a series of fringe patterns or
movies for a glass slide without any object. For example,
one can record 9000 fringe patterns for 5 min at a frame rate
of'30 Hz for a sensor area of 128x128 pixels (15.8x15.8 um)
using the “windowing” functionality of the CMOS sensor 10
for the setup shown in FIG. 3.

CMOS sensors can read out a certain region of interest
(ROI) from the whole sensor area, which is known as
windowing. One of the advantages of windowing is the
elevated frame rates, which makes CMOS a favorable
choice over CCDs to study the dynamic cell membrane
fluctuations. One of the main reasons for using a small
sensor area (128x128 pixels) is because processing the
whole sensor area images (1280x1024 pixels) may be com-
putationally expensive and time consuming. Path length
changes were computed by comparing the reconstructed
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phase distribution for each frame (containing the fringe
patterns) to a previously recorded reference background. It
should be noted that the 3D-printed DHMIC prototype was
not isolated against vibrations, that is, it was not placed on
an air floating optical table. One can compute standard
deviations for a total of 16,384 (128x128) pixel locations.

FIG. 10 shows the histogram of standard deviation fluc-
tuations with a mean standard deviation of 0.24 nm. With the
3D printed DHMIC prototype, one can achieve sub-nano-
meter temporal stability of the order of 0.24 nm without any
vibration isolation. This can be highly beneficial in the study
involving cell membrane fluctuations, which are on the
order of tens of nanometers.

Feature Extraction and Automated Cell Classification:

From the 3D reconstructions of micro-objects, one can
extract a series of features: mean physical cell thickness,
coeflicient of variation (COV), optical volume (OV) of the
cell, projected area of cell (PA), ratio of PA to OV, cell
thickness kurtosis, cell thickness skewness and the dry mass
of the cell. Before extracting these features, one can apply
Otsu’s algorithm, which clusters based on image threshold-
ing on the 2D unwrapped phase images. These eight features
are morphological cell features that contain more informa-
tion than the extracted features from the 2D bright-field
microscopic images.

In exemplary embodiments, the random forest (RF) clas-
sifier was chosen for cell identification/classification (see,
e.g., Pal, Mahesh, “Random forest classifier for remote
sensing classification,” Int’1 J. of Remote Sensing 26, No. 1
(2005): 217-222). RF is an ensemble learning method used
for classification tasks. In this classifier, a decision is taken
by considering the majority vote from the outputs of the
decision trees consisting of nodes, branches, and leaves.
Using the RF classifier, one can perform classification on
data obtained from the CMOS 10 and cell phone 12 using
the setup in FIGS. 1 and 3.

A dataset of unwrapped phase images was created for four
classes: 10-um polystyrene bead, 20-um glass bead, Diatom-
Tabellaria fenestrate, and frog blood cell. 3D profiles were
reconstructed from the CMOS 10 acquired digital holograms
by processing a total of 200 phase images (50 images per
class) using the steps described in the FIG. 5. This forms the
true class dataset. In addition, false class data that did not
belong to any of the four classes was recorded. The false
class data consisted of 3D reconstructions of digital holo-
grams of the class of 20-um polystyrene beads. A total of 50
false class 3D reconstructions were used. From these 3D
reconstructions, one can extract several cell features such as
mean physical cell thickness, COV, OV of the cell, projected
area of cell (PA), ratio of PA to OV, cell thickness kurtosis,
cell thickness skewness, and the dry mass of the cell.

After the feature extraction process, the RF classifier was
trained on the true class data. The true class dataset was split
in such a way that 30 reconstructions (features) from each
class were used to train the classifier, and the remaining 20
were used for testing. For the RF model, 100 decision trees
were used and Gini diversity index (GDI) criteria was used
to form the trees from the training data. To determine the
reliability of the classifier, one can examine the scores or
percentage of trees that voted for that class. If the scores
were below 75%, one can determine that the class output
was not reliable, and the data was false class. Table 2 below
depicts the confusion matrix for the classifier, which is
calculated by (TP+TN)/N, where TP is the number of true
positives, TN is the number of true negatives, and N is the
total number of test data. The classifier had an accuracy of
95.38% for CMOS-acquired data.
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TABLE 2

Comparison of Cell Classification Results for
Data Acquired Using the Setup in FIG. 1 for CMOS and Cell
Phone Sensors®

Random Forest (RF)
Classifier (CMOS Data)

Random Forest (RF)
Classifier (Cell Phone Data)

PP PN PP PN
TP 75 5 TP 75 5
TN 1 49 TN 3 47

“Random forest (RF) classifier was used.
TP: true positive,

TN: true negative,

PP: predicted positive,

PN: predicted negative.

One can also record digital holograms with a cell phone
sensor 12 using the setup in FIG. 1B with the same micro-
objects. There were 200 true and 50 false reconstructions
(features). For training, 120 true reconstructions were used
and 80 true and 50 false reconstructions (features) were used
for testing. The classifier had an accuracy of 93.85%. Table
2 describes the confusion matrix for the cell phone sensor-
based acquisition system. One reason for the marginally
lower classification accuracy for the system using the cell
phone sensor is that the recorded images were in the JPEG
format, which is a lossy compression scheme resulting in a
poorer image quality, while the CMOS camera 10 can save
images as .bmp, which does not compress the images. It is
noted that the cell phone camera 12 has a lower SNR than
the CMOS camera 10. Also, the dynamic range of the
CMOS 10 is higher than the cell phone sensor 12 due to
larger sensor areas and pixel sizes. An accuracy of 93.5%
using the cell phone system can be considered high enough
for classification-related tasks and shows that cell phone
sensors are capable of reliable hologram acquisition, which
can be used for automated cell identification.

In some embodiments, a computing device or computing
system may be programmed to determine features of a cell,
a cell-like object, or a microorganism (e.g., micro-object) in
a reconstructed image. These features can include some or
all of, but are not limited to: a mean physical cell thickness
value (h) for the cell/microorganism in the image; a standard
deviation of optical thickness (o,) for the cell/microorgan-
ism; a coeflicient of variation (COV) for the thickness of the
cell/microorganism; a projected area (Ap) of the cell/micro-
organism; an optical volume (V) of the cell/microorganism;
a thickness skewness value for the cell/microorganism,
where the thickness skewness measures the lack of symme-
try of the cell/microorganism thickness values from the
mean thickness value; a ratio of the projected area to the
optical volume (R, ,) for the cell/microorganism; a thick-
ness kurtosis value that describes the sharpness of the
thickness distribution for the cell/microorganism; and a dry
mass (M) of the cell/microorganism. The mean physical cell
thickness is the mean value of optical thickness for a
microorganism/cell and can be calculated using the follow-
ing equations:

OPL = [nc(x, y) = nu(x, Y)]h(x, y) =

A h > h —h—/LA(b:E—lZN:h
n(x, y)-h(x, y) (x, y) = 1—E _ﬁ Z, il

i=

where i=1,2,3 ... N" pixel

where n(x, y) is the refractive index of the cell, n,,(x, y) is
the refractive index of the surrounding medium and h(x, y)
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is the thickness of the cell of a pixel location (%, y), and
where n_(x, y) satisfies the following equation:

1 '3
ne(x, y) = Ef ne(x, y, 2)dz
0

The coefficient of variation (COV) in thickness is the
standard deviation of optical thickness for a microorganism/
cell divided by the mean thickness. The standard deviation
of optical thickness can be calculated using the following
equation:

1 & 2
oo = m;(hi—h)

where N is the total number of pixels containing the cell, h,
are the cell thickness values and is the mean cell thickness.
The COV can be calculated using the following equation:

70
COV:T
h

The optical volume (V) is obtained by multiplying the
area of each pixel with the thickness value at each pixel
location and integrating over the entire cell thickness profile
(SP) using the following equation:

Vo = f hx, y)ds
SP

The projected area (A,) can be calculated as the product
of the total number of pixels containing the cell and the area
of a single pixel using the following equation:

Ap=N

( A pix x X Apix y ]
0| —— TRy
(Optical Magnification?

where N is the total number of pixels that contain the cell,
and AP, , and Ap,, , are the pixel sizes in the x direction
and the y direction, respectively, for a single pixel of the
sensor. The projected area also depends upon the optical
magnification of the objective lens.

The cell thickness skewness measures the lack of sym-
metry of the cell thickness values from the mean cell
thickness value and can be calculated using the following
equation:

N

skewness = E

i=1

-1
o3

The ratio of the projected area to the optical volume
(R, ,) and can be calculated using the following equation:
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_Ap
p,a—vo

Cell thickness kurtosis describes the sharpness of the
thickness distribution. It measures whether the cell thickness
distribution is more peaked or flatter and can be calculated
using the following equation:

i)

of

Kurtosis =

i=1

The cell thickness is directly proportional to the dry mass
(M) of the cell, which quantifies the mass of the non-
aqueous material of the cell. That is, total mass of substances
other than water in the cell is known as the dry mass (M) and
can be calculated using the following equation:

1
M=_—

0A
f An(x, y)ds

2rw
Ap

where o is the refractive increment a, which can be approxi-
mated by 0.0018-0.0021 m*/Kg when considering a mixture
of all the components of a typical cell, A, is the projected
area of the cell, and A is the wavelength.

Conclusions:

In summary, one can design and fabricate a low-cost,
compact, and field-portable 3D printed DH microscope (see
FIGS. 1, 3, and 4). The microscope can require a minimal
number of off-the-shelf optical components compared to
complex and sophisticated two beam setups. The 3D printed
prototype exhibits a high temporal stability of the order of
0.24 nm according to exemplary experiments, which is
highly desirable in studies involving cell membrane fluc-
tuations or to study cell dynamics.

Feature extraction was performed separately for the
CMOS and cell phone acquired data, and the cells were
classified using the RF classifier. High accuracies for cell
classification have been achieved for both CMOS and cell
phone sensors. In addition, a high classification accuracy of
93.85% shows that cell phone cameras have the potential to
be used as an alternative to CMOS sensors.

Thus, the 3D printed DHMIC prototype can be used with
common mobile devices for hologram recording, and they
produce good classification results (see Table 2). There are
many advantages to using mobile devices in microscopy. For
example, using the field-portable prototype presented in the
present disclosure, it is possible to record and send digital
holograms to a computational device located remotely, via
the internet for data analysis. This becomes important when
the personnel handling the prototype lack the skills to
process the acquired data. It is believed that one can further
reduce the cost of the proposed device by incorporating
more 3D printed components to replace mechanical com-
ponents.

In addition, inexpensive laser diodes and CMOS sensors,
such as webcams, can be used in the setup. One can envision
that by making these changes, the whole setup will cost
between 50-100 USD. Mass-producing the system can fur-
ther reduce the cost. Some additional work aims to study
dynamic cell parameters, such as cell membrane vibration
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amplitude and vibration frequency, using the cell phone
sensor for human red blood cells and diagnosis diseases
using the compact setups shown in FIGS. 3 and 4.

Example 2: Sickle Cell Disease Diagnosis Based
on Spatio-Temporal Cell Dynamics Analysis Using
3D Printed Shearing Digital Holographic
Microscopy

This Example provides a spatio-temporal analysis of cell
membrane fluctuations to distinguish healthy patients from
patients with sickle cell disease. A video hologram contain-
ing either healthy red blood cells (h-RBCs) or sickle cell
disease red blood cells (SCD-RBCs) was recorded using a
low-cost, compact, 3D printed shearing interferometer.
Reconstructions were created for each hologram frame (time
steps), forming a spatio-temporal data cube. Features were
extracted by computing the standard deviations and the
mean of the height fluctuations over time and for every
location on the cell membrane, resulting in two-dimensional
standard deviation and mean maps, followed by taking the
standard deviations of these maps. The optical flow algo-
rithm was used to estimate the apparent motion fields
between subsequent frames (reconstructions). The standard
deviation of the magnitude of the optical flow vectors across
all frames was then computed. In addition, seven morpho-
logical cell (spatial) features based on optical path length
were extracted from the cells to further improve the classi-
fication accuracy. A random forest classifier was trained to
perform cell identification to distinguish between SCD-
RBCs and h-RBCs. This is the first report of machine
learning assisted cell identification and diagnosis of sickle
cell disease based on cell membrane fluctuations and mor-
phology using both spatio-temporal and spatial analysis.
Introduction:

Sickle cell disease (SCD) belongs to a group of inherited
red blood cell disorders. According to the National Institutes
of Health, people affected with SCD have abnormal hemo-
globin, called hemoglobin S or sickle hemoglobin in their
red blood cells (RBCs). Hemoglobin is a protein that is
responsible for transporting oxygen throughout the body.
Individuals suffering from SCD inherit two abnormal hemo-
globin genes, one from each parent. Healthy RBCs
(h-RBCs) contain normal hemoglobin and have a biconcave
disk shape, allowing them to squeeze through the micron
sized blood vessels to supply oxygen to various parts of the
body. In SCD, hemoglobin can form stiff rods within the
RBCs, creating crescent or sickle shaped RBCs and hinder-
ing oxygen transportation. The lack of oxygen delivery in
the body can cause sudden, severe pain, known as a pain
crisis, which may result over time in chronic organ damage
or failure.

Optical technologies are becoming increasingly popular
standalone modalities for disease diagnosis as these are
usually less invasive in nature. Recently, digital holographic
microscopy (DHM) and quantitative phase imaging (QPI)
based techniques have been used to study the morphology
and mechanical properties of RBCs for disease diagnosis.
DHM is an interferometry-based approach to image biologi-
cal samples. The system generates a hologram which can
then be numerically reconstructed, forming a three-dimen-
sional (3D) image of the height or optical path length (OPL)
profile of the cell. DHM and QPI techniques are label-free
and can non-invasively and quantitatively measure the opti-
cal path delays in phase objects, such as biological cells and
sparse tissue samples. Some DHM and QPI based tech-
niques may be complicated, bulky, and sensitive to mechani-
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cal noise. However, DHM and QPI have proven to be
extremely powerful 3D imaging tools due to their single-cell
profiling and label-free imaging capabilities. It has been
shown that healthy RBC and SCD-RBC membranes may
fluctuate at different rates providing additional information
for cell identification.

In this Example, classification of healthy RBCs and sickle
cell disease RBCs was performed using spatio-temporal
analysis with a compact and low-cost 3D printed shearing
interferometer. The prototype consisted of a laser source, a
microscope objective, glass plate and an imaging sensor. In
addition, this setup allowed for a stable, common-path DHM
system based on shearing geometry and used the cell mem-
brane fluctuations in the lateral and axial directions as
features for classification. A prospective, limited clinical
research study was conducted using peripheral blood from
consenting sickle cell patients and healthy control volun-
teers. This study was conducted in accordance with UConn
Health and UConn Storrs Institutional Review Board policy
standards. To be eligible for participation, each subject had
to be at least eighteen years of age and have not received a
blood transfusion in the previous three months. A total of
fourteen subjects were enrolled, eight with sickle cell dis-
ease (two females and six males) and six healthy volunteers
without sickle cell disease or any hemoglobinopathy trait
(four females and two males). For the healthy controls, the
mean age, in years, and standard deviation was 37 and 9
respectively, while the mean age and standard deviation of
subjects with SCD-RBCs—was 32 and 8, respectively.
Approximately 6-8 ml of blood was drawn from each human
subject. The time between drawing blood and measurement
was less than two hours. The mean and standard deviation of
the hemoglobin was 13.1 g/dL. and 1.6 g/dL for the healthy
controls, respectively, while it was 8 g/dL. and 1.4 g/dL. for
the SCD subjects, respectively. The demographic data and
clinical results by electrophoresis are presented in Table 3.

TABLE 3

Demographic and Clinical Comparison

of Healthy Controls vs. SCD Subjects:
Healthy
Controls SCD subjects
n=6 n=2g8

Gender, % Female (n) 67 (4) 25 (2)
Age (in years), mean (SD) 37 (9) 32 (8)
Race, % Black (n) 100 (6) 100 (8)
Hemoglobin (in 13.1 (1.6) 8 (1.4)
g/dL), mean (SD)
Hemoglobin
percentage, mean (SD)
A 97.5 (0.3) 0
A2 2.5 (0.3) 2.5(0.3)
S 0 79.6 (4.8)
F 0 17.9 (4.7)

*n = number of subjects, SD = standard deviation, SCD = sickle cell disease RBC

As shown in Table 3, all healthy controls had a normal
hemoglobin level and distribution of hemoglobin A and A2
indicating healthy controls produce normal adult hemoglo-
bin. Conversely, all subjects with sickle cell disease had low
total hemoglobin levels (as expected) and hemoglobin elec-
trophoretic results consistent with sickle cell disease (e.g.,
no hemoglobin A production, normal A2 levels, and varying
degrees of hemoglobin F and hemoglobin S). All hemoglo-
bin F production was endogenous as no subjects were taking
hydroxyurea, a medication that is known to stimulate hemo-
globin F production.
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After obtaining blood samples from each subject, thin
blood smears were prepared and sequenced digital holo-
grams of red blood cells using the proposed 3D microscope.
A blood-smear of human blood containing either h-RBCs or
SCD-RBCs was prepared and imaged using the compact
DHM setup and a video containing hologram frames was
recorded. Once a video hologram was captured from the
portable setup, cells were manually segmented and a 3D
reconstructed OPL profile of each cell was created for each
time frame followed by the formation of a spatio-temporal
data cube to measure the dynamic fluctuations of the cells.
Statistical analysis on dynamic features was performed
including computation of 2D mean and standard deviations
(STD) maps for every location on the cell membrane of the
data cube along the time axis. Once the 2D maps were
generated, the standard deviation for each 2D map was
computed. Moreover, optical flow (OF) was used to extract
cell fluctuation information between subsequent frames in
the temporal 3D reconstructions. The STD of the magnitude
of the OF vectors across all frames were then computed. In
addition, spatial features were extracted from the OPL
profiles based on seven morphological cell features includ-
ing mean optical path length (M-OPL), coefficient of varia-
tion (COV), Optical volume (OV), projected area (PA), ratio
of PA to OV, skewness and kurtosis. These additional
features were used along with the three spatio-temporal
features in order to further improve the classification accu-
racy. Using this information, all features were inputted into
a pre-trained random forest classifier to determine whether
the sample under inspection is SCD-RBC or h-RBC. An
advantage of the proposed system over previous works is
that SCD-RBCs may appear similar (morphological simi-
larity) to healthy RBCs, potentially compromising the accu-
racy of classification by morphological features; however,
differences in hemoglobin cause the cells fluctuate at dif-
ferent rates. By including features related to cell motility
(membrane fluctuations) for classification, improved classi-
fication may be possible.

Materials and Methods:
Experimental System:

For the 3D printed DHM setup, a collimated laser beam
passes through a sample which is then magnified by an
objective lens 16 (40x magnification). A fused silica glass
plate 14 (3 to 5 mm thick) inclined at an angle of 45° splits
the beam (from the objective) into two beams due to
reflections from the front and the back surface of the glass
plate 14 generating two laterally shifted object wavefronts.
The portion of the wavefront unmodulated by the object
provides the reference beam and the wavefront modulated
by the object acts as an object beam. These beams interfere
over the sensor and digital holograms are recorded. Also, the
lateral shear caused by the glass plate 14 helps to achieve
off-axis geometry which enhances the reconstructions and
simplifies the numerical processing of the digital holograms
in comparison to in-line DHM setups such as Gabor holog-
raphy. The fringe frequency is £=S/r A where S denotes the
lateral shift induced by the glass plate, A is the wavelength
of light source and r is the radius of curvature of the
wavefront. Moreover, the relationship between shift (S),
glass plate thickness (t), incidence angle on glass plate ()
and refractive index of glass (n) is given as follows: S/t=Sin
(2B) (n-sin B) V2. Hence a glass plate thickness of 3 to 5
mm is enough for the experiments, allowing for spatial
filtering the spectrum and satisfying the Nyquist criteria for
sampling. In order to have more control over the off-axis
angle, a wedge plate can be used.
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FIG. 11A illustrates a schematic of the proposed digital
holographic microscope (DHM) based on shearing geom-
etry for cell identification and disease diagnosis. A laser
source (A=633 nm) illuminates the sample under inspection
and a microscope objective magnifies the sample. A fused
silica glass plate splits the beam, generating two laterally
sheared object beams. These two sheared beams interfere
over the imaging sensor 10 (CMOS or CCD), and interfer-
ence fringes are observed.

FIG. 11B shows the 3D printed prototype employing
shearing geometry. Moreover, the dimensions of the system
shown in FIG. 11B are 90 mmx85 mmx200 mm.

FIG. 12A depicts the thickness profile of a blood smear
from a healthy volunteer and FIG. 12B shows a thickness
profile for a blood smear from a patient with SCD. It can be
seen from FIG. 12A that most of the healthy RBCs are round
while in FIG. 12B some of the RBCs from a SCD patient are
round, but the depressions in the RBCs’ center are not as
prominent and a few RBCs are elongated, or sickle shaped.
Accurate SCD diagnosis with respect to the state of health
of RBCs is difficult using visual inspection. Moreover,
visual inspection is not regarded as a valid medical diag-
nostic test by medical professionals and lab tests are gen-
erally necessary for an accurate medical diagnosis of sickle
cell disease. Even though the patient with SCD may have
round shaped RBCs, all RBCs produced by a patient with
SCD will contain abnormal hemoglobin. Morphological
similarities between the healthy and SCD-RBCs may pose a
problem for accurate classification tasks, hence by including
features related to cell motility (membrane fluctuations),
improved classification may be possible.

FIG. 16A shows a pseudo-color 3D height reconstruction
for an h-RBC and FIG. 16B shows a pseudo-color 3D
reconstruction for a round shaped SCD-RBC (see left in
FIG. 16B) and a crescent shaped SCD-RBC (see right in
FIG. 16B).

Off-Axis DHM Reconstruction Algorithm:

Once the video containing hologram frames has been
recorded, the 3D OPL reconstruction is generated from each
of the hologram frames (e.g., with object and background
(H,)). Thereafter, a Fourier transform of every digital holo-
gram frame is taken, filtered by digital filtering of the real
part of spectrum in Fourier domain, and then inverse Fourier
transformed, which outputs the phase map. Additionally,
also recorded was a hologram frame containing background
only (Hy) information—e.g., a hologram frame of the glass
slide containing no cell (just blood plasma).

One can inverse Fourier transform the filtered spectrums
separately to get object plus background phase (A®, from
H,) and background phase (A @, from Hy). In order to get
the phase information due to object only one can subtract the
phase map of the object and background from the phase map
with background only (e.g., AD=AD-AD ). This process
also removes most of the system related aberrations.

After the background phase subtraction, cells are manu-
ally segmented to allow for computation of features from the
individual cells. The phase was then unwrapped using the
Goldstein’s branch cut method to get the unwrapped phase
A®,,,. After phase unwrapping, one can compute the optical
path length (OPL) using the linear relationship given by:

OPL=A®;,-(M2n) where A is the source wave-
length.

Height (Ah) information can be calculated from the OPL by
An=0OPL/An when object and surrounding media’s refrac-
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tive indices are known and An=ngg—1,,,.4, 15 the refrac-
tive index difference between the cell and the surrounding
plasma.

It is worth mentioning that average refractive index of a
healthy RBC is given by ngzz-=1.42, while the average
refractive index for plasma is given by n,,,,,~1.34, the
refractive index varies for individual SCD-RBCs due to
stiffening of hemoglobin. Thus, accurate 3D height recon-
structions are difficult to compute in SCD case. Therefore,
one could have computed 3D OPL reconstructions for
feature extraction (used in classification) as An is not
required.

Temporal Stability of the Prototype:

The proposed prototype (see FIG. 11B) based on shearing
geometry exhibits very high temporal stability, which is
desired when studying the cell membrane fluctuations,
which are of the order of tens of nanometers. In order to
determine the temporal stability of the proposed prototype
(see FIG. 11B), one can record 600 fringe patterns for 20
seconds at a frame rate of 30 Hz for a sensor area of 512x512
pixels (or 67 umx67 pm) exploiting the “windowing” func-
tionality of the CMOS sensors, which is not available on
CCD sensors.

Using windowing, a user can select a region of interest
(ROI) from the available sensor area. One of the advantages
of windowing is the elevated frame rates, which allows
dynamic cell membrane fluctuations to be recorded at higher
frame rates (FPS). One reason for choosing a small ROI
from the whole image is the lower computation time.

After recording a movie of fringe patterns, path length
changes were computed by computing the standard devia-
tion between the reconstructed phase distributions for each
frame (containing the fringe patterns) and a previously
recorded reference phase distribution. The proposed proto-
type was tested, and the blood smears from healthy volun-
teers and patients suffering from SCD were collected and
prepared.

FIG. 44 shows a histogram of the standard deviation
values using the grey colored setup (see FIG. 11B). The
prototype has sub-nanometer stability, e.g., a mean of 0.76
nm with a standard deviation of 0.426 nm, taken on a clinical
bench. In FIG. 44, the dashed white line depicts location of
statistical mean, where o is the average of the standard
deviations.

The mean of the mechanical noise in the system, which is
due to both environmental noise and noise attributed to
optical components used in the system, was found to be in
the sub-nanometer range.

The mean noise is less than the expected value for cell
membrane fluctuations (usually on the scale of tens of
nanometers) of healthy and SCD-RBCs, which is highly
desired when studying membrane fluctuations.

FIG. 45A shows a video frame from the 3D pseudo-color
reconstruction for a h-RBC’s membrane fluctuations as
discussed above. FIG. 45B is the top view of the same
h-RBC, where the height fluctuations for three different
locations on the cell membrane’s surface were computed.

FIG. 46 shows a plot of the cell membrane fluctuations for
three different locations (A-C) as shown in FIG. 45B taken
over approximately 15 seconds. As shown in FIG. 46, the
standard deviation, o, of points A, B, and C are 83 nm, 69
nm, and 56 nm, respectively. The standard deviations of the
fluctuations are higher in the outer cell regions and lower in
the cell’s center.

Feature Extraction:

This Example investigated time-related features for clas-
sification to utilize the cell motility and dynamics as fea-
tures. To do this, a video hologram of RBCs is recorded over
a time period, t.
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In practice, video holograms containing RBCs were
recorded for approximately 20 seconds at a frame rate of 30
frames/sec resulting in approximately 600 frames. Cells are
manually segmented from the phase map and reconstructed
individually. After each hologram is reconstructed (e.g.,
OPL reconstructions), these reconstructions are stacked
together to form a data cube by employing the reconstruc-
tion steps mentioned above.

FIGS. 13A-B depict the formation of the data cube and
data stacks. FIG. 13A shows a stack of 3D reconstructions
for a healthy RBC at different time intervals. FIG. 13B
depicts the stack of reconstructed images as a spatio-tem-
poral data cube. Each pixel stack (tower) represents the
optical path length (OPL) changes on the cell membrane at
different interval of times t.

Thus, the new data set contains information of the cell for
the x-direction, y-direction, and axial OPL fluctuations over
time.

From the feature data cube, the mean and standard devia-
tion (STD) of each spatio-temp oral pixel stack was taken
across t. More specifically, the first spatio-temporal feature
is computed by creating a 2D mean map, shown in FIG.
14A, generated by finding the mean for each pixel stack
individually.

Thereafter, one can compute the standard deviation from
the 2D mean map. In a similar fashion, the second spatio-
temporal feature is determined by first computing the stan-
dard deviation (STD) for each pixel stack individually,
generating a 2D STD map, as shown in FIG. 14B. There-
after, the STD of the 2D STD map is computed.

To extract information about the cell motility between
subsequent frames (3D OPL reconstructions), e.g., the cell’s
lateral movement in time t, the optical flow algorithm was
used. This algorithm generates feature vectors correspond-
ing to the magnitude and direction of the movement of an
object’s pixels between frames. For feature extraction, the
mean of the magnitude vectors was computed between each
subsequent frame. The standard deviation of the mean of the
vectors was then used to compute the lateral motion (x-y) of
the RBC over time which was used as a third spatio-
temporal feature. The rationale is that SCD-RBCs are
assumed to be stiffer than the h-RBCs due hemoglobinopa-
thies. Thus, the fluctuations between subsequent frames will
be abnormal for a SCD-RBC compared to an h-RBC.

FIG. 15 depicts an example of the optical flow vectors.
Along with the three aforementioned spatio-temporal fea-
tures, one can use seven morphological features (spatial)
based on optical path length (OPL) such as, for example,
mean optical path length (M-OPL), coefficient of variation
(COV), Optical volume (OV), Projected area (PA), ratio of
PA and OV, skewness and kurtosis. FIG. 47 shows density
plots of the extracted features from the cell data.

Digital reconstruction of the holograms was implemented
using MATLAB. For a single frame with area of 512x512
pixels (21 pmx21 pm) using a 3.07 GHz Intel i7 Processor,
the reconstruction takes about 3.5 seconds, however mul-
tiple frames can be processed simultaneously by utilizing
parallel computing to reduce the overall processing time.
Feature extraction for 25 cells with 600 frames for each cell
takes approximately 1 minute.

The total processing time for a patient depends on the
number of cells necessary for accurate diagnosis as well as
the length and frame rate of videos required to extract
motility information. Optimization of these parameters as
well as dedicated hardware and software may significantly
reduce the overall computation time necessary for a diag-
nosis.

Classification:

After feature extraction, classification was performed

using a random-forest classifier with 100 trees for two
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scenarios. The first scenario consisted of a training set
containing SCD-RBC cells and healthy RBCs from all
patients whereas the test set contained SCD-RBCs and
healthy RBCs not used for training in the classifier.

The second scenario involved training of SCD cells and 3
healthy RBCS from a select few patients whereas the test set
consisted of patients’ cells not used in the training set to
determine if the patient suffers from SCD. For each scenario,
cell classification was performed for three cases.

In case 1, only the three aforementioned spatio-temporal
cell features were used, in case 2 only the seven aforemen-
tioned morphological (spatial) features based on optical path
length (OPL) were used, and in case 3 the three spatio-
temporal and the seven morphological (spatial) features
were combined to further improve the classification accu-
racy.
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The data set collected consisted of randomly selected 150
cells from six healthy volunteers and 150 randomly selected
cells from eight patients with SCD-RBCs. The data set was
then randomly split in half for testing and training. More
specifically, 75 h-RBCs and 75 SCD-RBCs were used for
training and 75 h-RBCs and 75 SCD-RBCs were used for
testing.

Table 4 depicts the confusion matrices for all three cases.
Using only the spatio-temporal-based features, a 78.00%
accuracy was achieved with a specificity of 81.33%, and a
sensitivity of 74.67%.

In case 2, wherein one can consider only the morphology-
based features, a 92.67% accuracy with a specificity of
96.00% and a sensitivity of 89.33% was achieved. The
classification results for using both the spatio-temporal and
the morphological-based features was 93.33% accurate with
a specificity of 100% and a sensitivity of 86.67%.

TABLE 4

Confusion matrix for classification of healthy RBCs and SCD-RBC:

spatio-temporal-based

morphology-based morphological and spatio-

features features temporal-based features
Predicted Predicted Predicted Predicted Predicted Predicted
Healthy SCD Healthy SCD Healthy SCD
Actual 56 19 67 8 65 10
Healthy
Actual 14 61 3 72 0 75
SCD

*Healthy = healthy RBCs; SCD = sickle cell disease RBC

35

40

45

50

55

60

65

A new classification model was created to determine if
sickle cell disease RBC was present in a patient. A training
set was created by randomly removing 2 healthy patients
and 2 SCD patients from the data set to be used for testing.

A random forest model was trained using only the remain-
ing 4 healthy and 6 SCD patients, then each patient held out
from the training set was tested individually using the
trained random forest classifier (RFC).

A patient was determined to be either healthy or suffering
from sickle cell disease based on the majority vote of the
RFC. If the majority of a patient’s cells are classified into a
single class, the patient was said to belong to that class.

More specifically, if more than 50% of the cells extracted
from the patient and inputted into the RFC are classified as
being SCD-RBCs, the patient was said to have sickle cell
disease. Otherwise, the patient was considered healthy.

Using only the spatio-temporal-based features, the two
healthy patients’ cells were classified as healthy RBCs with
accuracies of 20% and 30% leading to incorrect diagnosis,
whereas the two SCD patients’ cells were classified as
SCD-RBC with accuracies of 72% and 96%, leading to the
correct diagnosis as shown in Table 5.

Using only morphology-based features, the two healthy
patients’ cells were correctly classified as healthy RBC with
an accuracy of 90% and 80% resulting in a correct diagnosis.

The two SCD patients’ cells were classified as SCD-
RBCs with accuracies of 92% and 96%, leading to the
correct diagnosis.

Table 6 depicts the corresponding results. When both
morphology-based and spatio-temporal-based features were
used, the cells from the four patients (2 healthy and 2 with
SCD) were classified with 100% accuracy as healthy RBC
or SCD-RBC for their respective subjects.

The classification table for these patients is presented in
Table 7 below.
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Classification output for disease detection of patients using only spatio-temporal-based features:

Healthy

SCD

Healthy Patient 1 Healthy Patient 2

SCD Patient 1

SCD Patient 2

Predicted Predicted Predicted Predicted Predicted Predicted Predicted Predicted

Healthy SCD Healthy SCD Healthy SCD Healthy SCD
Actual 2 8 3 7 — — — —
Healthy
Actual — — — — 7 18 1 24
SCD
*Healthy = healthy RBCs; SCD = sickle cell disease RBC; — = not applicable
TABLE 6

Classification output for disease detection of patients using only morphology-based features:

Healthy

SCD

Healthy Patient 1 Healthy Patient 2

SCD Patient 1

SCD Patient 2

Predicted Predicted Predicted Predicted Predicted Predicted Predicted Predicted
Healthy SCD Healthy SCD Healthy SCD Healthy SCD
Actual 9 1 8 2 — — — —
Healthy
Actual — — — — 2 23 1 24
SCD
*Healthy = healthy RBCs; SCD = sickle cell disease RBC; — = not applicable
TABLE 7
Classification output for disease detection of patients using both morphological
and spatio-temporal-based features:
Healthy SCD
Healthy Patient 1 Healthy Patient 2 SCD Patient 1 SCD Patient 2
Predicted Predicted Predicted Predicted Predicted Predicted Predicted Predicted
Healthy SCD Healthy SCD Healthy SCD Healthy SCD
Actual 10 0 10 0 — — — —
Healthy
Actual — — — — 0 25 0 25
SCD
*Healthy = healthy RBCs; SCD = sickle cell disease RBC; — = not applicable

Feature importance was then computed using the predic-
tor importance estimate (PIE) to verify that the features used
contributed to the training model. The PIE was computed for
the random forest model used for patient level testing,
wherein both spatio-temporal and morphology-based fea-
tures were used. The predictor importance estimate is a
measure of a feature’s influence in determining the output of
a random forest classifier. To find this estimate, first the
out-of-bag error is calculated at each decision tree in the
random forest. The features associated with each decision
tree are then indexed. The values for a particular feature in
a decision tree are then permuted and a new out-of-bag error
is computed. The difference between the new out-of-bag
error and the original out-of-bag error is calculated to
determine the model error. A lower model error indicates
that a feature is not influential in predicting the output. This
is then repeated for all features in a decision tree and for all
decision trees. For each feature, the mean (d,) and standard
deviations (0,) of the model error is taken across all decision
trees and the final predictor importance estimate is calcu-
lated for a given feature by (d,)/o,.

55

The higher the predictor importance estimate (PIE), the
more influential a feature is in determining the output and
therefore, the more information the feature contributes to the
model. In FIG. 48, the importance of all 10 features is
shown. The ten features in order are optical flow, standard
deviation of the 2D mean map, standard deviation of the
standard deviation map, optical path length (M-OPL), coef-
ficient of variation (COV), Optical volume (OV), Projected
area (PA), ratio of PA and OV, skewness and kurtosis.
Feature 1 (optical flow) is the most important feature with a
PIE of 2.1989. Feature 2 (Mean of the Standard deviation)
is the least important with a PIE of 0.3103. From FIG. 48
one can deduce that inclusion of spatio-temporal features
provides additional useful information to the classifier,
which may result in improved classification accuracy. In
particular, feature 1 (optical flow) outperforms all other
features.

Discussion

There are several advantages of the proposed approach

over more traditional lab-based tests such as hemoglobin
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electrophoresis, including time, cost and accessibility. The
electrophoretic assay takes a few hours, but oftentimes,
multiple patients are batched together to reduce cost, which
can extend the time to results for a patient to several days.
Additionally, these tests require trained personnel and
adequate lab facilities, which may not be available in
third-world countries. Using the disclosed proposed
approach, specially trained personnel is not necessary, and
diagnosis of a patient may be capable in as little as a few
minutes from the initial blood draw, which may be further
reduced with optimized hardware and software. Further-
more, the proposed approach may reduce cost, as a single
system is not limited in the number of patients it can be used
to test.

Conclusion:

This Example has presented a compact, field portable
imaging system using shearing interferometry that can dis-
tinguish between healthy red blood cells (RBC) and sickle
cell disease (SCD) red blood cells using a spatio-temporal
analysis of cell membrane fluctuations combined with mor-
phological cell (spatial) features based on optical path length
(OPL). By testing on patients not included in the training of
the classifier, this proposed system is capable of performing
diagnosis of sickle cell disease. The proposed biosensor
recorded a video containing hologram frames of cells, which
were segmented and reconstructed for the individual frames
then stacked together to form a data cube. Feature extraction
was performed on the spatio-temporal data by computing
standard deviation (STD) of the mean and STD of the
spatio-temporal cube over time for each location on the cell
membrane.

Moreover, optical flow (OF) vectors were computed to
measure the lateral displacement of a cell over time. The
STD of the magnitude of the OF vectors were computed.
Spatial features based on the morphology of the cells were
then computed based on the optical path length including
mean optical path length (M-OPL), coefficient of variation
(COV), Optical volume (OV), Projected area (PA), ratio of
PA and OV, skewness and kurtosis.

By combining the spatio-temporal features and spatial
features, a pre-trained random forest classifier was able to
achieve high prediction accuracy. Using this approach is
advantageous, as the proposed classification system may be
capable of rapid and cost-effective testing to provide results
in near real time. Future work can involve a deeper analysis
of motility related features for biological classification prob-
lems, automated segmentation algorithms, larger pool of
patients, ROC analysis to determine the optimal cutoff value
for diagnosis, and increased frame rates of hologram video
acquisition as well as testing the proposed systems on
different types of diseased cells with various holographic
approaches.

In another example embodiment and with reference to
FIG. 17, it is noted that a RBC can have three possible
degrees of freedom (e.g., in the X, y and z directions of FIG.
17). An exemplary digital holographic microscope can com-
pute the axial motion (e.g., along the z-axis) of a RBC over
time. As such, exemplary 3D reconstructed images have
dimensions (X, y, 7).

By generating a video sequence of these 3D reconstructed
images, one can gather unique information about the cell.

For example, Feature 1 can be the standard deviation of
the mean of the 3D reconstructed image, I(x, v, z), over time
t, which yields a single number.

Feature 2 can be the standard deviation of the standard
deviation of the 3D reconstructed image I(x, y, z) over time
t, which yields a single number.
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The optical flow magnitude vectors compute the lateral
motion (x-y) of a RBC in time t. As such, Feature 3 can be
the standard deviation of the mean of the optical flow vectors
of a 3D reconstructed image I(X, y, z) over time t, which
yields a single number. The values for Feature 1, Feature 2,
and Feature 3 for a micro-object (e.g., a cell or microorgan-
ism) can be used for classification of the micro-object.

Optical flow computes the movement of an object (e.g.,
RBC) from one frame to another. Optical flow estimation
can be used in computer vision to characterize and quantify
the motion of objects in a video stream, sometimes for
motion-based object detection and tracking systems and
often uses the assumption of constant illumination over time
t.

The output of the optical flow algorithm are vectors, V,
that depict the direction of the movement of an object with
four features: vector magnitude [V], vector angle 6, x-com-
ponent of vector, V,, and y-component of vector, V.

FIGS. 18A-18B show optical flow between successive
frames of a segmented RBC. FIG. 18A shows optical flow
between frame 1 and frame 2, and FIG. 18B shows optical
flow between frame 2 and frame 3. The magnitude of the
optical flow vectors of FIGS. 18A and 18B are computed for
Feature 3.

A single example frame from an example sickled RBC
video of optical flow over all frames can be depicted. In each
frame, the direction of flow is given by the vectors (quivers).
It is noted that the high fluctuations occurred on the periph-
ery of the cell.

As noted above, once Features 1, 2 and 3 were extracted,
classification was performed using a random-forest classi-
fier. Feature 1 can be the standard deviation of the mean of
the data cube, thereby generating a 2D mean map (FIG.
14A). Feature 2 can be the standard deviation of the standard
deviation of the data cube, thereby generating a 2D standard
deviation map (FIG. 14B). Feature 3 can be the standard
deviation of the mean of the optical flow. The dataset
collected included 38 cells from healthy patients and 24 cells
from sickled patients. The dataset was then split in half for
testing/training. For the random-forest classifier, 100 trees
were used.

It is also noted that these systems and methods fusing
machine learning paired with OF as a simple and robust tool
for automated classification can be utilized for other micro-
scopic processes where cells exhibits cellular movement
(e.g., cell division, cancer studies, stem cells, etc.).

Example 3

Digital holographic microscopy (DHMIC) is a label-free
imaging modality that enables the viewing of microscopic
objects without the use of exogenous or contrast agents.
DHMIC provides high axial accuracy; however, the lateral
resolution is dependent on the magnification of the objective
lens used. DHMIC overcomes two problems associated with
conventional microscopy: the finite depth of field, which is
inversely proportional to the magnification of the objective,
and low contrast between the cell and the surrounding
media. Cells alter the phase of the probe wave front passing
through the specimen, depending on the refractive index and
thickness of the object. Several methods have been devel-
oped to transform the phase information of the object into
amplitude or intensity information, but these methods only
provide qualitative information and lack quantitative infor-
mation. Staining methods, such as the use of exogenous
contrast agents, can enhance the image contrast, but it might
change the cell morphology or be destructive. Due to the
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availability of fast CCD and CMOS sensors, it is possible to
record digital holograms in real time. The recorded holo-
grams can be numerically reconstructed by simulating the
process of diffraction using scalar diffraction, leading to the
complex amplitude of the object. This complex amplitude
contains the spatial phase information of the object, from
which one can reconstruct the phase profile of the object.

Digital holography and microscopy are complementary
techniques, and when combined, they can be useful for
studying cells in a quantitative manner. To study dynamic
parameters of the cell, such as cell membrane fluctuations,
one needs a very stable setup because these fluctuations
occur over just a few nanometers. The problem with existing
digital holographic (DH) microscopy setups that use a
double path configuration, is that the beams travel in two
different arms of the interferometer and are then combined
using a beam-splitter. As a result, the two beams may acquire
uncorrelated phase changes due to mechanical vibrations. In
comparison to two beam or double path interferometric
setups, common path setups are more robust and immune to
mechanical vibrations. In a common path setup, the two
beams travel in the same direction, that is, the direction of
beam propagation.

Some embodiments include a compact, and field portable
holographic microcopy imaging system. In some embodi-
ments, the system that can be used for automated cell
identification. In some embodiments, the system includes a
laser light source, a microscopic objective lens, a shear plate,
an imaging device (e.g., a CMOS camera or a cell phone
camera), and a housing configured to hold the shear plate
and to maintain a position of the shear plate relative to the
objective lens. In some embodiments, the components used
to build the setup are off-the-shelf optical components
combined with a custom housing. In some embodiments, the
custom housing may be printed from using 3D printer. In
some embodiments, the system is a low cost, compact, and
field-portable holographic microscopy system.

In some embodiments, the system also includes a com-
puting device in communication with the imaging device. In
some embodiments, the computing device is programmed to
reconstruct pseudocolor 3D renderings from the phase maps
after numerical processing of the digital hologram. In some
embodiments, the computing system is also programmed to
extract features from the 3D reconstruction. In some
embodiments, features are extracted from a cell or a micro-
organism or a cell-like object in the sample.

In some embodiments, the compact and field portable
holographic microcopy imaging systems are described and
disclosed in the related U.S. Provisional Application No.
62/631,268 and entitled “PORTABLE COMMON PATH
SHEARING  INTERFEROMETRY-BASED  HOLO-
GRAPHIC MICROSCOPY SYSTEM” filed on Feb. 15,
2018, the entirety of which is incorporated herein by refer-
ence, and such systems can be used to classify a cell as
similarly disclosed in Examples 1 and 2 above.

In some embodiments, data is recorded at various time
points, features are extracted for various points in time, and
time-dependent features are used for the automated cell
classification as described in Examples 1 and 2 above.

Based on their developments in automated classification
of cells based on time dependent features, the inventors
realized that a portable, common-path shearing interferom-
etry-based microscope with good temporal stability that
could be used for automated cell identification would be
incredibly advantageous for onsite analysis of samples in
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facilities and areas where space is at a premium, or where
normal analysis facilities are not available and the system
could be carried in.

Some embodiments of the portable common path shearing
interferometry-based holographic microscopy system have
good stability over time even though they are small and not
mounted on a traditional floating optical table. As noted
above, this is especially important when time-dependent
processes, such as cell membrane fluctuations, are being
studied or time-dependent features are being used for the
classification of cells. Some embodiments eliminate com-
ponents and optical elements used in traditional common
path shearing interferometry-based holographic microscopy
systems to improve temporal stability. The custom housing
of systems also improves temporal stability by reducing
vibrations between various components (e.g., between the
shear plate and the objective lens) by mounting both com-
ponents to the same housing. Further, in contrast to tradi-
tional common path shearing interferometry-based holo-
graphic microscopy systems, the geometries employed by
the housings in embodiments enable the optical components
to be housed in a relatively small system that is lightweight
and portable, while maintaining good temporal stability.

In some embodiments, the system is portable having a
relatively small size and a relatively small weight. For
example, in some embodiments, the system has a length of
less than 350 mm, a width of less than 350 mm and a height
of less than 300 mm. In some embodiments the system has
a length of less than 320 mm, a width of less than 320 mm
and a height of less than 250 mm. In some embodiments, the
system has a length of less than 150 mm, a width of less than
150 mm and a height of less than 250 mm. In some
embodiments, the system has a length of less than 100 mm,
a width of less than 95 mm and a height of less than 200 mm.
In some embodiments, the system has a length of less than
90 mm, a width of less than 90 mm and a height of less than
130 mm. In some embodiments, the system has a mass of
less than 6 kg. In some embodiments, the system has a mass
of less than 2 kg. In some embodiments, the system has a
mass of less than 0.9 kg. In some embodiments, the system
has a mass of less than 0.5 kg. In one example embodiment,
a system has a length of about 95 mm, a width of about 75
mm and a height of about 200 mm. In one embodiment, the
system has a length of about 90 mm, a width of about 85 mm
and a height of about 200 mm. In one example embodiment,
a system has a length of about 80 mm, a width of about 80
mm and a height of about 130 mm. In one example embodi-
ment the system has a mass of about 0.87 kg. In one example
embodiment the system has a mass of 0.45 kg.

FIGS. 19A-19F depict an embodiment of a portable
common path shearing interferometry based holographic
imaging system 100. The system 100 includes a light source
(e.g., laser diode 110), a sample holder 112, an objective lens
116, a shear plate 118, an imaging device 120, and a housing
130, where the housing 130 holds the shear plate 118. In
some embodiments, the housing 130 is mounted on a base
140 as shown. The system 100 is configured to position the
laser light source 110, the sample holder 112, the objective
lens 116, the glass plate 118 and the imaging device 120 in
a common path shearing interferometry configuration as
explained below with respect to FIG. 20.

FIG. 20 schematically depicts the beam path and optical
elements of the system 100 shown FIGS. 19A-19F. The laser
light source (e.g., laser diode 110) outputs a beam 126 which
illuminates a sample 122 at a specimen plane 124. After
passing through the specimen plane 124 and through/around
the sample 122, the beam 126 is magnified by the micro-
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scope objective lens 116, and is incident on the shear plate
118, which splits the beam generating two laterally sheared
object beams 1264, 1265. These two sheared beams interfere
at the imaging device 120 and interference fringes are
observed.

In some embodiments, the system may exhibit good
temporal stability. As noted above, in comparison to two
beam or double path interferometric setups, common path
interferometers are more robust and immune to mechanical
vibrations, at least, because in a common path setup the two
beams in the same direction at the same time along the
common path. Some embodiments incorporate additional
features that increase the temporal stability of the system.
For example, some digital holographic imaging systems
incorporate a beam expander, a mirror or other additional
optical elements between the laser light source and the
specimen plane; however, the more optical elements
between the laser source and the imaging device, the greater
the impact of vibrations on temporal stability. Thus, some
embodiments do not include any optical elements in the
beam path between the laser source and the specimen plane.
In some embodiments, the only optical elements in the beam
path between the laser light source and the imaging device
are the shear plate, the microscope objective and a support
for the sample, such as a sample stage/slide mount. Further,
having many of the optical components supported by the
same housing increases the temporal stability of the system.
In embodiments where the different portions of the housing
are all part of a unitary piece, the system may exhibit even
better temporal stability.

In some embodiments, the housing 130 is configured to
maintain the relative positions of at least the objective lens
116 and the shear plate 118. For example, in some embodi-
ments, the objective lens 116 is mounted to the housing 130,
either directly or indirectly. In some embodiments, the
housing is also configured to maintain the position of the
sample holder 112 relative to the objective lens 116 and the
shear plate 118. For example, in some embodiments, the
sample holder 112 is mounted to the housing 130, either
directly or indirectly. In the embodiment shown in FIGS.
19A-19F, the objective lens 116 is mounted to a lens and
stage mounting component 128 that enables x-y lateral
adjustment of the objective lens 116 through two adjustment
knobs 129a, 1295. The lens and stage mounting component
128 also has a portion, which is used as the sample holder
112, that can be translated in the z-direction relative to the
objective lens 116 using a third control knob 129¢. The lens
and stage mounting component 128 is mounted to a back
wall of the housing 130. An opening 146 in the back wall of
the housing provides access to the third control knob 129¢
(see FIGS. 19B, 19D and 19F). In this embodiment, the lens
and stage mounting component 128 is a modified version of
a commercially available spatial filter mount, which is
depicted in Figured 25A and 25B. In some embodiments, the
housing 130 is also configured to maintain the position of the
imaging device 120 relative to the objective lens 116 and the
shear plate 118. For example in some embodiments, the
imaging device 120 is also mounted to the housing 130,
either directly or indirectly. In the embodiment shown in
FIGS. 19A-19F, the housing 130 includes an imaging device
holding portion 136 that is configured to receive and hold an
imaging device (see also FIGS. 24A and 24B).

The housing 130 also includes a shear plate holding
portion 134 that is configured to receive and hold the shear
plate. Further details regarding the shear plate holding
portion are provided below with respect to FIGS. 23A and
23B.
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FIGS. 21-25B depict components of the housing 130,
specifically the sidewall portion 138, the housing base
portion 132, the shear plate holding portion 134 and the
imaging device holding portion 136. In some embodiments,
one or more of the components depicted in FIGS. 21-25B
may be combined into one or more unitary pieces instead of
being formed as separated components. In some embodi-
ments, one or more of the components of the housing may
be formed by 3D printing. In some embodiments, one or
more of the components may be formed by molding. Any
other suitable technique may be employed for forming or
making the components of the housing.

FIGS. 21A and 21B depict a sidewall portion 138 of the
housing, to which the microscope objective lens 116 and the
sample holder 112 are mounted. In the embodiment
depicted, a front wall of the sidewall portion has a large
opening 142 for accessing the laser light source 110, the
microscope objective 116 and the sample holder 112. In the
embodiment depicted, a back wall of the sidewall portion
138 has a hole 144 to enable attachment of the lens and stage
mounting component 128 using a screw or bolt. The back
wall of the sidewall portion 138 also has an opening 146 to
enable access to the knob 129¢ to the z-control for the lens
and stage mounting component 128 to control a height of the
sample holder 112. The housing is also configured to enclose
the laser light source 110, the sample holder 112, and the
microscope objective lens 116. In some embodiments, a first
side wall of the sidewall portion 138 includes two openings,
alower opening 148 for accessing the sample holder 112 and
an upper opening 150 for accessing the adjustment knob
12956 for adjusting a lateral position of the microscope
objective 116. In some embodiments, a second sidewall of
the sidewall portion 138 includes an opening 152 for access-
ing the sample holder 112.

In some embodiments, the housing 130 includes a base
portion 132 that may be attached to the housing or may be
a unitary portion of the housing. In some embodiments, a
separate base 140 may be employed where the housing 130
is attached to the separate base 140. In some embodiments,
the housing 130 includes a base portion 132 and the housing
including the base portion are attached to a separate base
140. FIG. 22 depicts a top view of a base portion 132 of the
housing 130. In the system depicted in FIGS. 19A-19F, the
laser light source (e.g., the laser diode light source) is
mounted to the separate base 140 using a post holder 154
that screws into the separate base 140 through the base
portion 132 of the housing (see FIGS. 19B and 19F).

FIGS. 23A and 23B depict a shear plate holding portion
134 of the housing that is configured to hold the shear plate
118. In some embodiments, the shear plate holding portion
134 of the housing is positioned over the sidewall portion
138 of the housing. In some embodiments, the shear plate
holding portion 134 is attached to the sidewall portion 138
(e.g., via glue, melt bonding, or via screws) In some embodi-
ments, the shear plate holding portion 134 of the housing
includes a slot 160 configured to receive the shear plate 118
as shown. In some embodiments, the shear plate holding
portion 134 of the housing defines a first channel 162
extending to the slot configured to hold the shear plate 118
(see also FIG. 19F). In some embodiments, the shear plate
holding portion 134 of the housing also a second channel
162 that intersects with the first channel 164. The shear plate
holding portion 134 of the housing is configured such the
light beam 126 enters through the first channel 162, strikes
the shear plate 118, and is reflected off the different surfaces
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of the shear plate 118 as two different beams 1264, 1265
along the second channel 164 toward the imaging device
120.

FIGS. 24A and 24B depict the imaging device holding
portion 136 of the housing. In some embodiments, the
imaging device holding portion 136 of the housing is
attached to the shear plate holding portion 136 of the
housing (see FIGS. 19C-19E). The imaging device holding
portion 136 of the housing is configured to receive and hold
the imaging device 120 (e.g., a CMOS image sensor). In
some embodiments imaging device holding portion 136 is
permanently attached to the shear plate holding portion 136
and in some embodiments it is detachable or removable to
enable the system to work with other imaging devices
having other physical configurations. FIGS. 24C and 24D
depict an optional cover 137 for the imaging device holding
portion 136 of the housing that may be included in some
embodiments.

FIGS. 25A and 25B depict the 128 lens and stage mount-
ing component 128.

FIGS. 26A-26E depict another embodiment of a portable
common path shearing interferometry based holographic
imaging system 102. System 102 has some similarities with
system 100 described above, however, it has fewer compo-
nents. For simplicity, the reference numbers employed for
system 100 will be used to when referring to similar com-
ponents in system 102, however, there are differences
between many of the components in the different systems
which are described below. In system 102, the lens and stage
mounting component 128 is replaced with single translating
stage 168 that attaches to the back of the sidewall portion
138 of the housing. FIGS. 26C and 26D show the system
102 with the sample holder 112, microscope objective 116
and laser light source 110 removed to provide a clear view
of the single translating stage 168. A sample holder 112 is
attached to the single translating stage 168. A microscope
objective holder is affixed (e.g., by an adhesive) in a tapered
hole in the shear plate holding portion 134 of the housing.
The microscope objective holder includes internal threads
that mate with threads in the microscope objective lens 116
for removably mounting the microscope objective lens 116
to the shear plate holding portion 134 of the housing.
Because there is no longer an x-y adjustment for the objec-
tive, fewer openings are needed in the sidewall portion 138
of the housing.

In system 102, the imaging device holding portion 136 of
the housing is omitted and the imaging device 120 itself
mounts to the shear plate holding portion 134 of the housing
(see FIGS. 26B and 26E).

System 102 includes a base portion 132 of the housing,
but does not include a separate base 140. Instead, the
housing 130 in system 102 is supported on legs 170a-1704.

FIG. 27 depicts another embodiment of a portable com-
mon path shearing interferometry based holographic imag-
ing system 104. System 104 has some similarities with
system 100 and system 102 described above, however, it
includes fewer components as compared to system 100 and
system 102, and may exhibit more robust temporal stability.

In system 104, the orientation of the shear plate holding
portion 134 of the housing is reversed with respect to that of
system 100 and 102 so that the imaging device 120 is
mounted to the front of the system.

In system 104, the sidewall portion 138 of the housing, the
bottom portion 132 of the housing and the shear plate
holding portion 143 of the housing are all formed in one
unitary piece, instead of being multiple components that are
attached to each other. By forming these portions of the
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housing in one unitary piece, vibrations between different
portions of the housing may be reduced, thereby increasing
the temporal stability of the system 104. FIGS. 28A-28D
depict different views of the housing 130 of system 104. In
this embodiment, the back wall of the housing has four holes
144a-144d for mounting the translation stage 168, which
translates the sample holder, to the housing 130. Further, the
opening 163 of the first channel 162 in the shear plate
holding portion 134 of the housing is sized and configured
for mounting the microscope objective.

In system 194, the housing 130 is attached to a base plate
172, which may be 3D printed, molded or formed in any
other suitable manner. In some embodiments, the housing
130 is glued or bonded to the base plate 172. In some
embodiments, the housing 130 is attached to the base plate
using screws or using any other suitable mechanism. In
some embodiments, the housing 130 and base plate 172 may
be formed together in one unitary piece. FIGS. 29A and 29B
depict the base plate 172.

FIGS. 30A-30B depict another embodiment of a portable
common path shearing interferometry based holographic
imaging system 106. System 106, which incorporates a laser
source as opposed to a laser diode source for the laser light
source 120, cannot be made as compact as systems 100, 102
and 104; however, the laser source exhibits better temporal
beam stability than a laser diode light source, which can
improve the overall temporal stability of the system. The
system 106 includes a housing 130 with a sidewall portion
138 and a shear plate holding portion 134 that are attached
to each other. The housing 130 includes a top 180 of the
sidewall portion that is configured to hold the microscope
objective (see FIG. 34). The sample holder 112 is not
mounted to the sidewall of the housing like in the systems
100, 102, 104. Instead, the sample holder 112 is mounted to
a 3-axis stage 174, which is mounted to a base plate 176 (see
FIGS. 32A and 32B). Below the sample holder 112, a mirror
on an adjustable mirror mount that is on a 45 degree mount
178 (see FIGS. 32A and 32B) is used to direct the beam from
the laser vertically upward and toward the sample.

FIGS. 31A and 31B depict the sidewall portion 138 of the
housing 130 for system 106. The large aperture in the back
side enables the laser to extend into the housing 130.

In the system 106, a relatively low magnification objec-
tive is being employed, which requires a relatively long
distance between the sample and the imaging plane. In this
embodiment, an adapter 182 (see FIG. 35) is employed that
attaches to the housing and to which the imaging device is
attached, which provides the necessary separation. In
embodiments where a higher magnification objective is
employed, the adapter may be shortened or omitted.

FIGS. 36A and 36B depict the shear plate holding portion
of the housing 130 for system 106. FIGS. 37A and 37B
depict the sample holder 112 for system 106. FIG. 38 depicts
a wire holder 184 that may be attached to a portion of the
housing to secure the cord and prevent it from moving.

In some embodiments, the system 100, 102, 104, 106
includes or is in communication with a computing device or
a computing system. The computing device or computing
system is configured for generating an image reconstruction
and/or a 3D reconstruction of the sample based on the
hologram data acquired by the imaging device. Example
computing devices and computing systems are described
below with respect to FIGS. 41-43.

In some embodiments, holograms instead of shearograms
are formed at the detector. This is achieved by introducing
shear much larger than the magnified object image so that
the images from the front and back surface of the shear plate
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are spatially separated. Portions of the wavefront (reflected
from the front or back surface of the shear plate) unmodu-
lated by the object information act as the reference wave-
front and interfere with portions of the wavefront (reflected
from the back or front surface of the shear plate) modulated
by the object, which acts as the object wavefront. If the shear
amount is larger than the sensor dimension, the second
image (either due to reflection from the front or back
surface) falls outside the sensor area. If the sensor dimension
is more than the shear amount, redundant information about
the object is recorded. In some embodiments, the full
numerical aperture (NA) of the magnitying lens is utilized in
the formation of the holograms. As a result, in these embodi-
ments, full spectral information can be used in the image
reconstructions, and only the NA of the imaging lens limits
the imaging.

In the reconstruction, the size of the filter window of the
Fourier transformed holograms should be limited due to
unwanted sidebands. These sidebands may appear because
of the non-uniform intensity variation at the detector plane,
leading to a change in the contrast of the interference
fringes. Another reason may be intensity image saturation
leading to a non-sinusoidal fringe pattern. In addition, the
size of the filter window determines the maximum spatial
frequency available in the reconstructed images. For imag-
ing sensors with sufficient resolution (e.g., CMOS detec-
tors), the lateral resolution in the reconstructed images is not
limited by the imaging lens, but by the size of the filter
window.

The lateral shear caused by the shear plate helps to
achieve off-axis geometry, which enhances the reconstruc-
tions and simplifies the processing to reconstruct the digital
holograms, which is typically not possible in in-line DHMIC
setups such as Gabor holography. Moreover, the carrier
fringe frequency of the interferogram should not exceed the
Nyquist frequency of the sensor, as the carrier fringe fre-
quency is related to the off-axis angle caused by the lateral
shear generated by the glass plate. This means the fringe
frequency is a function of the thickness of the shear plate.
Thus, a thicker shear plate can be used to increase the
off-axis angle. The fringe frequency is f=S/rA, where S
denotes the lateral shift induced by the shear plate, A is the
wavelength of light source, and r is the radius of curvature
of the wavefront. Moreover, the relationship between
shift (S), shear plate thickness (t), incidence angle on shear
plate (§), and refractive index of material of the shear plate
(n) is given as follows: S/t=Sin(2p) (n®-sin p) "% To have
more control over the off-axis angle, a wedge plate can be
used as the shear plate.

Two holograms can be recorded: one with an object and
background (H,,), and another with background only (Hy).
The Fourier transform of each hologram is taken, filtered
(digital filtering of the real part of spectrum in Fourier
domain), and then inverse Fourier transformed, generating
the phase map for the respective digital hologram. The same
filter window with the same dimensions is applied to filter
the spectrums of both H,, and Hy. This process results in two
phase maps, one corresponding to the object and back-
ground (A¢ ) and the other to the background only (A ). To
obtain the phase map information due to the object only
(Ad), the phase map of the object and background is sub-
tracted from the phase map with background only (A¢=Adz—
A¢,); this process also removes most of the system-related
aberrations.

The phase difference due to the object only (A¢) is then
unwrapped using the Goldstein’s branch cut method. After
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phase unwrapping (A¢,;,), the cell height/thickness, Ah, can
be determined, using the following equation:

A1
A=Ay, 5

where A¢,,, is the unwrapped phase difference, A is the
source wavelength, and An is the refractive index difference
between the object and the surroundings used for the recon-
struction process.

In some embodiments, a computing device or computing
system may be programmed to determine features of a cell,
a cell-like object, or a microorganism in a reconstructed
image. These features can include some or all of, but are not
limited to: a mean physical cell thickness value (h) for the
cell/microorganism in the image; a standard deviation of
optical thickness (o,) for the cell/microorganism; a coeffi-
cient of variation (COV) for the thickness of the cell/
microorganism; a projected area (A,) of the cell/microor-
ganism; an optical volume (V) of the cell/microorganism;
a thickness skewness value for the cell/microorganism,
where the thickness skewness measures the lack of symme-
try of the cell/microorganism thickness values from the
mean thickness value; a ratio of the projected area to the
optical volume (R, ) for the cell/microorganism; a thick-
ness kurtosis value that describes the sharpness of the
thickness distribution for the cell/microorganism; and a dry
mass (M) of the cell/microorganism.

The mean physical cell thickness is the mean value of
optical thickness for a microorganism/cell and can be cal-
culated using the following equations:

OPL = [nc(x, y) = ny(x, Y)]A(x, y) = An(x, y)-h(x, y) =

PRV R
it N[Z h"]’

where i=1,2,3,... N* pixel

Wx, y)=h =

where n_(y) is the refractive index of the cell, n,,(x, y) is the
refractive index of the surrounding medium and h(x, y) is the
thickness of the cell of a pixel location (%, y), and where
n (X, y) satisfies the following equation:

1
ne(x, y) = %fhnc(x, ¥, 2)dz
0

The coefficient of variation (COV) in thickness is the
standard deviation of optical thickness for a microorganism/
cell divided by the mean thickness. The standard deviation
of optical thickness can be calculated using the following
equation:

where N is the total number of pixels containing the cell, k
are the cell thickness values and h is the mean cell thickness.
The COV can be calculated using the following equation:
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The optical volume (V) is obtained by multiplying the
area of each pixel with the thickness value at each pixel
location and integrating over the entire cell thickness profile
(SP) using the following equation:

Vo = fh(x, y)ds

SP

The projected area (A,) can be calculated as the product
of the total number of pixels containing the cell and the area
of a single pixel using the following equation:

Apix_x XApix_y

Ap=NX (— - - 2]
(Optical Magnification)

where N is the total number of pixels that contain the cell,
and Ap,  and A, are the pixel sizes in the x direction and
the y direction, respectively, for a single pixel of the sensor.
The projected area also depends upon the optical magnifi-
cation of the objective lens.

The cell thickness skewness measures the lack of sym-
metry of the cell thickness values from the mean cell
thickness value and can be calculated using the following
equation:

N -3
k E (i —h)
SKEewness = _—
o3
]

The ratio of the projected area to the optical volume
(R, ) and can be calculated using the following equation:

Ap
Roa= 3
Cell thickness kurtosis describes the sharpness of the
thickness distribution. It measures whether the cell thickness
distribution is more peaked or flatter and can be calculated
using the following equation:

N

4 Z (ZR0)
Kurtosis = T
To

i=1

The cell thickness is directly proportional to the dry mass
(M) of the cell, which quantifies the mass of the non-
aqueous material of the cell. That is, total mass of substances
other than water in the cell is known as the dry mass (M) and
can be calculated using the following equation:

2ra
Ap

101
M=— fAn(x, y)ds

where is the refractive increment a, which can be approxi-
mated by 0.0018-0.0021 m/Kg when considering a mixture
of all the components of a typical cell, A, is the projected
area of the cell, and A is the wavelength.
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In some embodiments, these features may be calculated
by a feature extraction module 220, which is described
below with respect to FIG. 41. The features extraction
module 220 may be executing on a computing device
associated with an imaging device, or may be provided
remotely via a network.

In some embodiments, a system 200 is used to analyze
data from the shearing interferometry-based microscope
system 100. FIG. 41 is a block diagram showing a system
200 in terms of modules for analyzing the hologram data.
The modules include one or more of a thickness reconstruc-
tion module 210, a feature extraction module 220, a static
classification module 230, and a dynamic classification
module 240. The modules may include various circuits,
circuitry and one or more software components, programs,
applications, or other units of code base or instructions
configured to be executed by one or more processors (e.g.,
processors included in a device 510 or a device 520 shown
in FIG. 42). In an example embodiment, one or more of
modules 210, 220, 230, and 249 are included in a device
(e.g., device 510 or device 520 shown in FIG. 42). In another
embodiment, one or more of the modules 210, 220, 230, 240
may be provided remotely by a server through a network.
Although modules 210, 220, 230 and 240 are shown as
distinct modules in FIG. 41, it should be understood that
modules 210, 220, 230 and 234 may be implemented as
fewer or more modules than illustrated. It should be under-
stood that one or more of modules 210, 220, 230, and 240
may communicate with one or more components included in
exemplary embodiments of the present disclosure (e.g.,
computing device 510, imaging device 515, computing
device 520, server 530, or database(s) 540 of system 500
shown in FIG. 42).

The reconstruction module 210 may be a software imple-
mented or hardware implemented module configured to
reconstruct a thickness profile map from hologram data. The
feature extraction module 220 may be a software imple-
mented or hardware implemented module configured to
extract features regarding cells or microorganisms from the
sample data. The static classification module 230 may be a
software implemented or hardware implemented module
configured to classify cells or microorganisms in a sample in
an automated fashion based on static data measurements.
The dynamic classification module 240 may be a software
implemented or hardware implemented module configured
to classify cells or microorganisms in a sample in an
automated fashion based on time evolving features of the
cells or microorganisms. In some embodiments, aspects of
the method are implemented on a computing device asso-
ciated with the shearing digital holographic microscopy
system, which is described in FIG. 43. In some embodi-
ments, some aspects of the method are implemented on a
computing device associated with the shearing digital holo-
graphic microscope system and other aspects are imple-
mented remotely (e.g., on a server remote from the shearing
digital holographic microscope system).

FIG. 42 illustrates a network diagram depicting a system
500 for implementing some methods described herein,
according to an example embodiment. The system 500 can
include a network 505, multiple devices (e.g., a computing
device 510, a computing device 520, an imaging device 515,
and imaging device 525), a server 530, and database(s) 540.
Each of the computing device 510, computing device 520,
server 530, and database(s) 540 may be in communication
with the network 505. In some embodiments, the computing
device 510 is in wired or wireless communication with the
imaging device 515. Although imaging device 515 is shown
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as connected to the network 505 through computing device
510, additionally or alternatively, imaging device 515 may
connect to the network directly.

In an example embodiment, one or more portions of
network 505 may be an ad hoc network, an intranet, an
extranet, a virtual private network (VPN), a local area
network (LAN), a wireless LAN (WLAN), a wide area
network (WAN), a wireless wide area network (WWAN), a
metropolitan area network (MAN), a portion of the Internet,
a portion of the Public Switched Telephone Network
(PSTN), a cellular telephone network, a wireless network, a
WiFi network, a WiMax network, another type of network,
or a combination of two or more such networks.

The computing device 510 may include, but is not limited
to, work stations, computers, general purpose computers, a
data center (a large group of networked computer servers),
Internet appliances, hand-held devices, wireless devices,
portable devices, wearable computers, cellular or mobile
phones, portable digital assistants (PDAs), smart phones,
tablets, ultrabooks, netbooks, laptops, desktops, multi-pro-
cessor systems, microprocessor-based or programmable
consumer electronics, network PCs, mini-computers, and
the like. The computing device 510 can include one or more
components described in relation to computing device 600
shown in FIG. 43.

Similarly, the computing device 520 may include, but is
not limited to, work stations, computers, general purpose
computers, a data center (a large group of networked com-
puter servers), Internet appliances, hand-held devices, wire-
less devices, portable devices, wearable computers, cellular
or mobile phones, portable digital assistants (PDAs), smart
phones, tablets, ultrabooks, netbooks, laptops, desktops,
multi-processor systems, microprocessor-based or program-
mable consumer electronics, network PCs, mini-computers,
and the like. The computing device 520 can include one or
more components described in relation to computing device
600 shown in FIG. 43.

The devices 510, 520 may connect to network 505 via a
wired or wireless connection. The device 510, 520 may
include one or more applications or systems such as, but not
limited to, a web browser, and the like. In an example
embodiment, the computing device 520 may perform some
of the functionalities described herein.

Each of the database(s) 540 and server 530 is connected
to the network 505 via a wired or wireless connection. The
server 530 may include one or more computers or processors
configured to communicate with the devices 510, 520 via
network 505. In some embodiments, the server 530 hosts
one or more applications accessed by the devices 510, 520
and/or facilitates access to the content of database(s) 540.
Database(s) 540 may include one or more storage devices
for storing data and/or instructions (or code) for use by the
server 530, and/or devices 510, 520. Database(s) 540 and
server 530 may be located at one or more geographically
distributed locations from each other or from devices 510,
520. Alternatively, database(s) 540 may be included within
server 530.

FIG. 43 is a block diagram of an exemplary computing
device 600 that can be used to perform the methods provided
by exemplary embodiments. The computing device 600
includes one or more non-transitory computer-readable
media for storing one or more computer-executable instruc-
tions or software for implementing exemplary embodiments.
The non-transitory computer-readable media can include,
but are not limited to, one or more types of hardware
memory, non-transitory tangible media (for example, one or
more magnetic storage disks, one or more optical disks, one
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or more USB flashdrives), and the like. For example,
memory 606 included in the computing device 600 can store
computer-readable and computer-executable instructions or
software for implementing exemplary embodiments. The
computing device 600 also includes processor 602 and
associated core 604, and optionally, one or more additional
processor(s) 602' and associated core(s) 604' (for example,
in the case of computer systems having multiple processors/
cores), for executing computer-readable and computer-ex-
ecutable instructions or software stored in the memory 606
and other programs for controlling system hardware. Pro-
cessor 602 and processor(s) 602' can each be a single core
processor or multiple core (604 and 604") processor.

Virtualization can be employed in the computing device
600 so that infrastructure and resources in the computing
device can be shared dynamically. A virtual machine 614 can
be provided to handle a process running on multiple pro-
cessors so that the process appears to be using only one
computing resource rather than multiple computing
resources. Multiple virtual machines can also be used with
one processor.

Memory 606 can include a computer system memory or
random access memory, such as DRAM, SRAM, EDO
RAM, and the like. Memory 606 can include other types of
memory as well, or combinations thereof.

A user can interact with the computing device 600
through a visual display device 618, such as a touch screen
display or computer monitor, which can display one or more
user interfaces 619 that can be provided in accordance with
exemplary embodiments. The visual display device 618 can
also display other aspects, elements and/or information or
data associated with exemplary embodiments. The comput-
ing device 600 can include other I/O devices for receiving
input from a user, for example, a keyboard or other suitable
multi-point touch interface 608, a pointing device 610 (e.g.,
a pen, stylus, mouse, or trackpad). The keyboard 608 and the
pointing device 610 can be coupled to the visual display
device 618. The computing device 600 can include other
suitable conventional I/O peripherals.

In some embodiments, the computing device is in com-
munication with an imaging device 515 or an image capture
device 632. In other embodiments, the imaging device is
incorporated into the computing device (e.g., a mobile
phone with a camera).

The computing device 600 can also include one or more
storage devices 624, such as a hard-drive, CD-ROM, or
other computer readable media, for storing data and com-
puter-readable instructions and/or software, such as the
system 200 that implements exemplary embodiments of the
authentication system described herein, or portions thereof,
which can be executed to generate user interface 619 on
display 618. Exemplary storage device 624 can also store
one or more databases for storing suitable information
required to implement exemplary embodiments. Exemplary
storage device 624 can store one or more databases 626 for
storing data used to implement exemplary embodiments of
the systems and methods described herein.

The computing device 600 can include a network inter-
face 612 configured to interface via one or more network
devices 622 with one or more networks, for example, Local
Area Network (LAN), Wide Area Network (WAN) or the
Internet through a variety of connections including, but not
limited to, standard telephone lines, LAN or WAN links (for
example, 802.11, T1, T3, 56 kb, X.25), broadband connec-
tions (for example, ISDN, Frame Relay, ATM), wireless
connections, controller area network (CAN), or some com-
bination of the above. The network interface 612 can include
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a built-in network adapter, network interface card, PCMCIA
network card, card bus network adapter, wireless network
adapter, USB network adapter, modem or another device
suitable for interfacing the computing device 600 to a type
of network capable of communication and performing the
operations described herein. Moreover, the computing
device 600 can be a computer system, such as a workstation,
desktop computer, server, laptop, handheld computer, tablet
computer (e.g., the iPad® tablet computer), mobile comput-
ing or communication device (e.g., the iPhone® communi-
cation device), or other form of computing or telecommu-
nications device that is capable of communication and that
has sufficient processor power and memory capacity to
perform the operations described herein.

The computing device 600 can run operating systems 616,
such as versions of the Microsoft® Windows® operating
systems, different releases of the Unix and Linux operating
systems, versions of the MacOS® for Macintosh computers,
embedded operating systems, real-time operating systems,
open source operating systems, proprietary operating sys-
tems, operating systems for mobile computing devices, or
another operating system capable of running on the com-
puting device and performing the operations described
herein. In exemplary embodiments, the operating system
616 can be run in native mode or emulated mode. In an
exemplary embodiment, the operating system 616 can be
run on one or more cloud machine instances.

Example 4

A first example system was built in accordance with
system 106 depicted in FIGS. 30A-38. This example system
included a HeNe laser (A=633 nm) and was mounted on an
optical breadboard. The system weighed 4.62 kg with the
HeNe laser and breadboard and weighted 800 g without the
HeNe laser and breadboard. The lateral dimensions of the
first example system were 304 mm by 304 mm with a height
of 170 mm. The first example system was used with two
different imaging devices, the first was a CMOS sensor and
the second was a cell phone camera.

The CMOS sensor was an 8 bit, 5.2 um pixel pitch, model
DCC1545M from Thorlabs, which has a large dynamic
range and a 10-bit internal analog-to-digital conversion, but
it transfers images to the PC with a bit depth of 8 bits to
improve the readout time of the camera. For the cell phone
sensor setup, a Google Nexus 5, which has an 8 MP primary
camera, 1/3.2" sensor size, and 1.4 um pixel size, was used.
Moreover, the cell phone camera used 8 bits/channel. When
comparing the camera sensor with the cell phone sensor, the
dynamic range of the cell phone sensor may be lower due to
the small sensor and pixel size, as the pixel wells fill quicker
due to low saturation capacity. Moreover, the cell phone
sensor had a Bayer filter for color detection. Finally, the cell
phone camera sensor had a lower SNR than the CMOS
camera. One reason is that the images generated from the
cell phone camera were in the JPEG format, which is a lossy
compression scheme resulting in a poorer image quality. The
CMOS camera can save images as .bmp, which does not
compress the images.

It is important to calculate the camera parameters. Imagel
(a public domain software: https://imagej.nih.gov/ij/) was
used to establish an equivalence between the pixel covered
by the object (also taking optical magnification into account)
and the distance in microns for the cell phone sensor and
CMOS. FIGS. 2A-2B show the equivalence between the
pixels and the distance in microns.
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The test object used in FIGS. 2A-2B was a 20-um glass
bead (SPI supplies). The other beads observed in FIGS.
2A-2B (solid yellow boxes around the objects) were the
sheared copies of the same objects. Moreover, the field of
view (FOV) of the DH microscope can depend on the
objective and eyepiece lens used. A higher magnification
objective gives a smaller FOV, as the sensor must image a
more magnified object in comparison to a lower magnifica-
tion lens; hence, a relatively smaller, magnified specimen
region can be imaged on the sensor. For this example, a 40x
objective lenses with a numerical aperture (NA) of 0.65 was
used with the CMOS sensor. The actual magnification
depends on the placement of the camera sensor from the
objective. The theoretically achievable lateral resolution
with this objective is 0.595 um. To use the cell phone with
the first example system 106, the CMOS was replaced with
the eyepiece and the cell phone. A cell phone adapter was 3D
printed to hold the camera and eyepiece in place. The
eyepiece used with the cell phone setup had a magnification
of 25x. Table 1 summarizes the parameter values for the
CMOS and the cell phone sensor.

A second example system was built in accordance with
system 100 described above with respect to FIGS. 19A-19F.
The second example system was more compact and lighter
than the first example system. This second example system
used a laser diode light source (Thorlabs, CPS 635) with a
wavelength of 635 nm and an elliptical beam profile in place
of the HeNe laser. The second example system had lateral
dimensions of 75 mm by 95 mm and was 200 mm tall. The
second example system weighed 910 g (without the base)
and 1.356 kg (with the base).

The computed lateral resolution of the first example
system, taking into consideration the filter window size, was
approximately 1.2 um. The computed lateral resolution of
the second, more compact, example system was 0.9 um. For
the example systems a 3-5 mm thick glass plate was using
for the shear plate, which enabled spatial filtering of the
spectrum and satisfied the Nyquist criteria for sampling.
Imaging Test Microspheres and Cells for the First Example
System Using HeNe Laser:

Glass microspheres with a mean diameter of 19.9 plus/
minus 1.4 pm and average refractive index n, =1.56 were
used test the performance of the first example system when
used with the CMOS camera. The microspheres were
immersed in oil (average refractive index, n,=1.518) and
then spread on a thin microscopic glass slide and covered
with a thin coverslip. The digital holograms were recorded,
and the 3D profiles were reconstructed as described above.
FIGS. 6A-6E show the results of the reconstruction.

FIG. 6A is the digital hologram of a 20-um glass bead,
acquired using the CMOS sensor. FIG. 6B shows the
unwrapped phase profile of the bead. FIG. 6C shows the
height variations, as depicted by color maps, and FIG. 6D is
the one-dimensional cross-sectional profile, along the line
(see FIG. 6C). FIG. 6E shows the pseudocolor 3D rendering
of the thickness profile for the same bead. The thickness/
diameter was measured for 50 20-um glass microspheres,
and the mean diameter for the microspheres was measured
to be 17.38 plus/minus 1.38 pm, which was close to the
thickness value specified by the manufacturer.

The experiments were repeated for biological cells,
including Diatom-Tabellaria (n,,=1.50) and E. coli bacteria
(n,,=1.35). Both cell types were immersed in deionized
water (n,,=1.33). FIG. 7A shows the digital hologram of the
Diatom-Tabellaria cells. FIG. 7B shows the height variations
depicted by color maps, FIG. 7C shows the 1D cross-
sectional profile of the diatom along the line, and FIG. 7D
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is the reconstructed 3D height profile for the diatom. Like-
wise, FIGS. 7E-7TH are the digital hologram, the height
variations depicted by color maps, the 1D cross-sectional
profile along the line (see FIG. 7F), and the reconstructed 3D
height profile for the E. coli bacteria. From FIG. 7H, one can
see that the length of E. coli is close to 12 um, the width is
between 2-4 pum, and maximum height is 0.6 um.

Imaging Test Microspheres and Cells for the Second
Example System (Compact 3D Printed Setup Using a Laser
Diode):

To show the 3D reconstruction capabilities with the
second example system, which was the more compact 3D
printed DH microscope system 100 shown in FIGS. 19A-
19F, the 3D data was reconstructed from the holograms as
described above.

FIG. 8A is the digital hologram of a 20-um glass bead
(n,=1.56) immersed in oil (n,=1.5181) that was acquired
using the CMOS sensor for the second example system. The
bead diameter (obtained experimentally) is 17.427 um plus/
minus 0.903 um. FIG. 8B shows the unwrapped phase
profile of the bead. FIG. 8C shows the height variations
depicted by the color maps, and FIG. 8D is the one-
dimensional cross-sectional profile along the line (see FIG.
8B). FIG. 8E shows the pseudocolor 3D rendering of the
thickness profile for the same bead.

Data was also obtained from yeast cells (n,=1.53)
immersed in deionized water (n,,=1.33) using the second
example system. FIG. 9A is the digital hologram of yeast
cells immersed in distilled water acquired using the CMOS
sensor. FIG. 9B shows the unwrapped phase profile of the
cells. FIG. 9C shows the height variations depicted by color
maps, and FIG. 9D is the one-dimensional cross-sectional
profile, along the line (see FIG. 9C). FIG. 9E shows the
pseudocolor 3D rendering of the thickness profile for the
same cells.

In the reconstructions, roughness around and on the
objects was observed. This roughness can be attributed to
optical thickness variations. Microspheres may not be
smooth. Moreover, the optical thickness variation of the
object and its surroundings depends on either change in the
real thickness or due to spatially changing refractive index
(due to density change) in the micro-sphere and its surround-
ings.

The size of the roughness was approximately 1-2 pm,
which became visible as the window size becomes large
enough to accommodate the high spatial frequencies. One
can obtain smooth reconstructions if the size of the filter
window is reduced. Other possible reasons for the roughness
is sample deformations and the presence of impurities.
Temporal Stability of the First Example System Using HeNe
Laser:

As described above, the systems herein employ common
path digital holography and exhibit a very high temporal
stability in contrast to the two beam configurations such as
Michelson and Mach-Zehnder interferometers, where the
two beams may acquire uncorrelated phase changes due to
vibrations. To determine the temporal stability of the first
example system, a series of fringe patterns or movies were
recorded for a glass slide without any object. For example,
9000 fringe patterns were recorded for 5 min at a frame rate
of'30 Hz for a sensor area of 128x128 pixels (15.8x15.8 um)
using the “windowing” functionality of the CMOS sensor.

CMOS sensors can read out a certain region of interest
(ROI) from the whole sensor area, which is known as
windowing. One of the advantages of windowing is the
elevated frame rates, which makes CMOS a favorable
choice over CCDs to study the dynamic cell membrane
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fluctuations. One of the main reasons for using a small
sensor area (128x128 pixels) is because processing the
whole sensor area images (1280x1024 pixels) may be com-
putationally expensive and time consuming. Path length
changes were computed by comparing the reconstructed
phase distribution for each frame (containing the fringe
patterns) to a previously recorded reference background. It
should be noted that the 3D-printed DHMIC prototype was
not isolated against vibrations, that is, it was not placed on
an air floating optical table. Standard deviations were com-
puted for a total of 16,384 (128x128) pixel locations.

FIG. 10 shows the histogram of standard deviation fluc-
tuations with a mean standard deviation of 0.24 nm. With the
first example system, sub-nanometer temporal stability of
the order of 0.24 nm was obtained without any vibration
isolation. This can be highly beneficial in the study involv-
ing cell membrane fluctuations, which are on the order of
tens of nanometers.

Thus, the first example system and the second example
system can be used with common mobile devices for holo-
gram recording. There are many advantages to using mobile
devices in microscopy. For example, using the field-portable
prototypes presented in the present disclosure, it is possible
to record and send digital holograms to a computational
device located remotely, via the internet for data analysis.
This becomes important when the personnel handling the
system lack the skills to process the acquired data. In
addition, inexpensive laser diodes and CMOS sensors, such
as webcams, can be used in the setup. Mass-producing the
system can further reduce the cost.

Use of the First Example System Including a HeNe Laser to
Study Red Blood Cells:

Sickle cell disease (SCD) is a life threatening condition,
where a person suffering from such a disease is prone to
several complications such as organ malfunction, which is
caused due to deformations in the shapes (e.g., from dough-
nut to a sickle) of red blood cells (RBC). The first example
system based on system 100 was used to image deforma-
tions in membranes of red blood cells (RBC). RBC mem-
brane fluctuations can provide some insights into the state of
a cell. The present disclosure provides a spatio-temporal
analysis of cell membrane fluctuations. A video hologram of
a cell was recorded and reconstructions were created for
every hologram frame (time steps). Analysis of the recon-
structions enabled automated classification of the cells as
normal or sickle cells as described above in Example 2.

Holograms were recorded of RBC samples using the first
example system. Reconstructed thickness profiles were gen-
erated from the holograms. FIG. 12A depicts three 3D
reconstructed images/profiles (holograms) of healthy RBCs
from different patients, while FIG. 12B depicts three 3D
reconstructed images/profiles (holograms) of sickle cell dis-
eased (SCD) RBCs from different patients.

Example 5

Several additional example systems were built and tested
for temporal stability. A third example system was built in
accordance with system 102 described above with respect to
FIGS. 26A to 26D. The system had a length of 90 mm, a
width of 85 mm and a height of 200 mm. The system had a
mass of 0.87 kg.

A fourth example system was built in accordance with
system 104 described above with respect to FIG. 27. The
system had a length of 80 mm, a width of 80 mm and a
height of 130 mm. The system had a mass of 0.43 kg.
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The example systems were tested for temporal stability,
where stability was calculated as the mean/average of the
standard deviations calculated for every pixel for frames in
a video over a period of time. FIG. 39 is a table of the
various example systems under different conditions where
the “black setup” refers to the first example system corre-
sponding to system 106, “grey setup” refers to the third
example system corresponding to system 102, and the
“green setup” refers to the fourth example system corre-
sponding to system 104. FIG. 40 is a histogram of the
standard deviations for the various systems. As indicated in
FIGS. 39 and 40 the temporal stability was better than 1 nm
for all example systems under all circumstances. For some
of the systems, the temporal stability was better than 0.5 nm.

Although the systems/methods of the present disclosure
have been described with reference to exemplary embodi-
ments thereof, the present disclosure is not limited to such
exemplary embodiments/implementations. Rather, the sys-
tems/methods of the present disclosure are susceptible to
many implementations and applications, as will be readily
apparent to persons skilled in the art from the disclosure
hereof. The present disclosure expressly encompasses such
modifications, enhancements and/or variations of the dis-
closed embodiments. Since many changes could be made in
the above construction and many widely different embodi-
ments of this disclosure could be made without departing
from the scope thereof, it is intended that all matter con-
tained in the drawings and specification shall be interpreted
as illustrative and not in a limiting sense. Additional modi-
fications, changes, and substitutions are intended in the
foregoing disclosure. Accordingly, it is appropriate that the
appended claims be construed broadly and in a manner
consistent with the scope of the disclosure.

The invention claimed is:

1. A method for automated classification of a micro-
object, the method comprising:

obtaining digital holographic data from a sample imaged

in a common path shearing digital holographic micro-
scope, the common path shearing digital holographic
microscope including a laser source, a microscopic
objective lens, a glass plate and an imaging device, the
digital holographic data including a video hologram of
at least one micro-object in the sample recorded over a
pre-determined time period;

generating a plurality of 3D reconstructed height profiles

of'a micro-object in the video hologram, the plurality of
3D reconstructed height profiles obtained from a cor-
responding plurality of hologram frames spanning the
pre-determined time period;

generating a 2D mean map of the 3D reconstructed height

profiles of the micro-object, the 2D mean map gener-
ated by determining the mean height for each pixel of
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the plurality of 3D reconstructed height profiles over
the pre-determined time period;

generating a 2D standard deviation map of the 3D recon-

structed height profiles of the micro-object, the 2D
standard deviation map generated by determining the
standard deviation in height for each pixel of the
plurality of 3D reconstructed height profiles over the
pre-determined time period;

determining the standard deviation of the 2D mean map to

generate a value for a first feature for the micro-object
in the video hologram;
determining the standard deviation of the 2D standard
deviation map to generate a value for a second feature
for the micro-object in the video hologram;

determining optical flow vectors between 3D recon-
structed height profiles corresponding to successive
frames for each 3D reconstructed height profile after
the first 3D reconstructed height profile;
determining the mean of the magnitude of the optical flow
vectors over the pre-determined time period;

determining the standard deviation of the mean of the
magnitude of the optical flow vectors of the plurality of
3D reconstructed height profiles over the pre-deter-
mined time period to generate a value for a third feature
for the micro-object in the video hologram;

determining whether the micro-object belongs to a par-
ticular type of micro-object by applying a pre-trained
classifier to the value of the first feature, the value of the
second feature and value of the third feature; and

based on the determination, saving an indication of
whether the micro-object belongs to a particular type of
micro-object.

2. The method of claim 1, wherein the pre-trained clas-
sifier is a random forest classifier.

3. The method of claim 1, wherein the particular type of
micro-object is a healthy red blood cell.

4. The method of claim 1, wherein the particular type of
micro-object is a sickled red blood cell.

5. The method of claim 1, wherein the particular type of
micro-object is a biological cell or a microorganism.

6. The method of claim 1, wherein the sample includes
blood.

7. The method of claim 1, wherein the plurality of
hologram frames of the video hologram of the at least one
micro-object in the sample are recorded at a rate of between
20 and 40 frames per second.

8. The method of claim 1, wherein the plurality of
hologram frames comprise between 100 and 900 frames.

9. The method of claim 8, wherein the plurality of
hologram frames comprise between 400 and 700 frames.
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